

IO-Link

Operating Instructions

Ultrasonic proximity switch with one analogue output, one switched output and IO-Link

Ipc+15/CFI Ipc+15/WK/CFI
Ipc+25/CFI Ipc+25/WK/CFI
Ipc+35/CFI Ipc+35/WK/CFI
Ipc+100/CFI Ipc+100/WK/CFI

Product description

The Ipc+ sensor offers a non-contact measurement of the distance to an object which must be positioned within the sensor's detection zone. The switched output is set conditional upon the adjusted detect distance, as an alternative to the set window margins, a distance proportional analogue signal is output.

Via the Teach-in procedure, the detect distance and operating mode can be adjusted. Two LEDs indicate operation and status of the switching and analogue outputs.

The Ipc+ sensors are IO-Link-capable in accordance with IO-Link specification V1.1 and support Smart Sensor Profile like Digital Measuring Sensor.

Safety instructions

- Read the operating instructions prior to start-up.
- Connection, installation and adjustments may only be carried out by qualified staff.
- No safety component in accordance with the EU Machine Directive.

Use for intended purpose only

Ipc+ ultrasonic sensors are used for non-contact detection of objects.

Installation

- Mount the sensor at the place of fitting.
- Connect a connection cable to the M12 device plug, see fig. 1.

Start-up

- Connect the power supply.
- Carry out sensor adjustment in accordance with the diagram »Sensor adjustment with the Teach-in procedure«.

Set operation-specific parameters can be locked against changes with the teach-in procedure »Switch on or off Teach-in + Synchronization«.

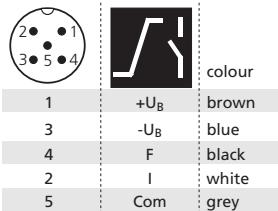
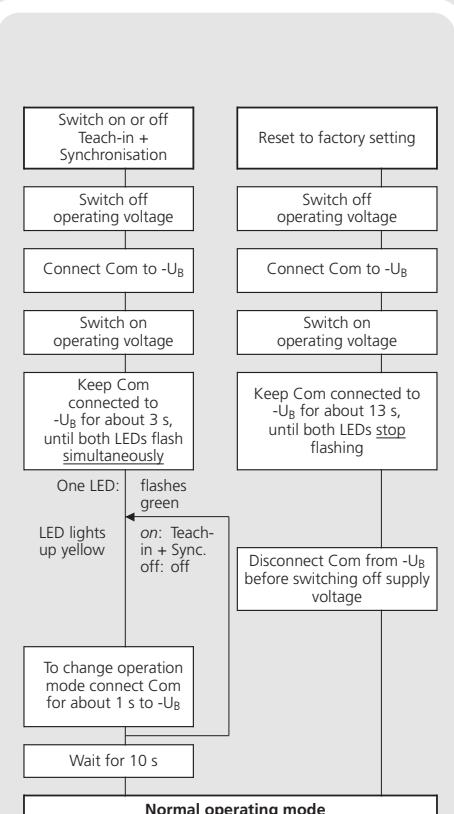
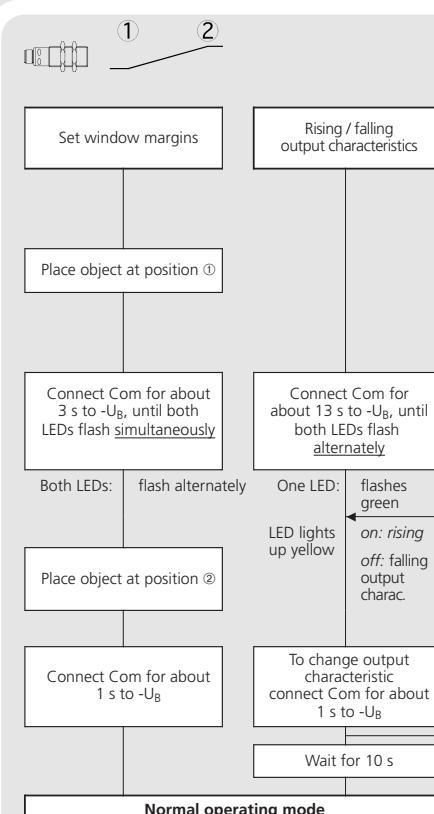
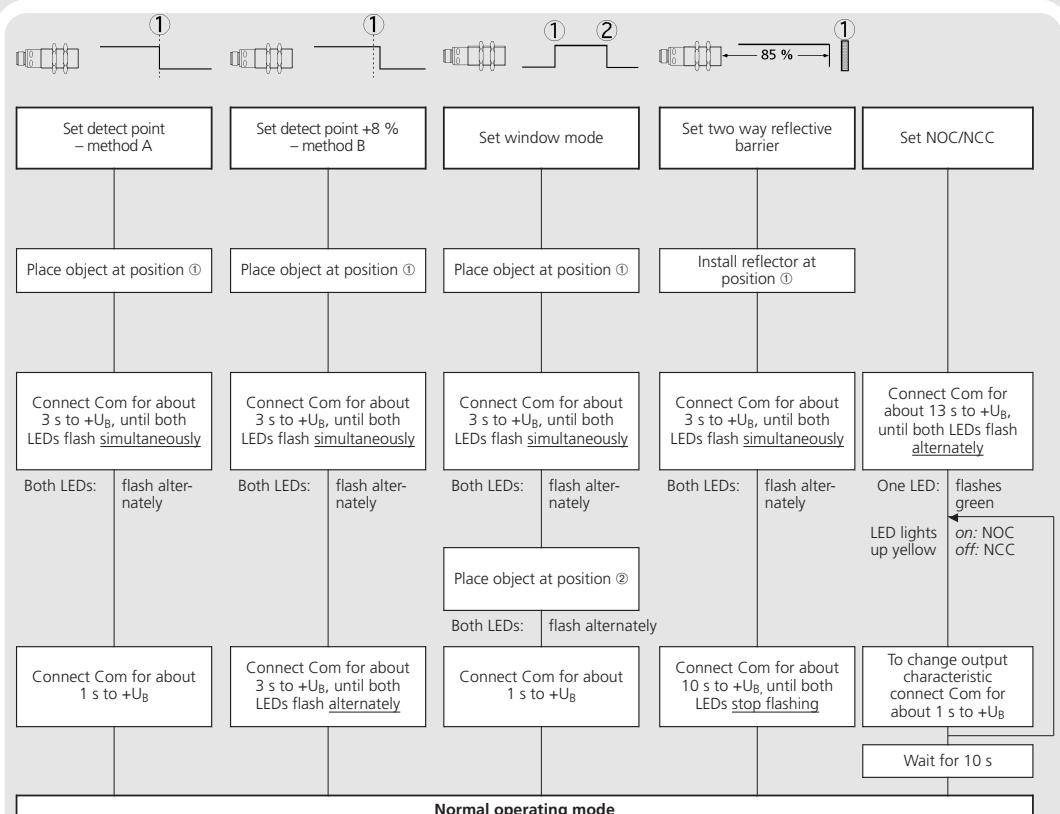





Fig. 1: Pin assignment with view onto sensor plug and colour coding of the microsonic connection cables

Factory setting

- Detect point operation
- Switched output on NOC
- Detect distance at operating range
- Multi-function input »Com« set

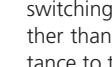
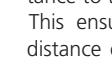
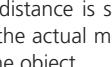
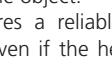
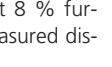
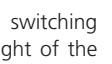
Sensor adjustment with Teach-in procedure

to »Teach-in«

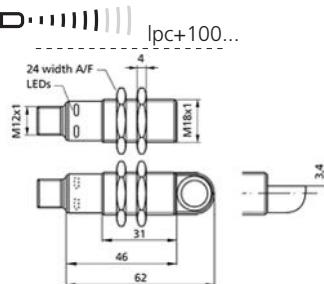
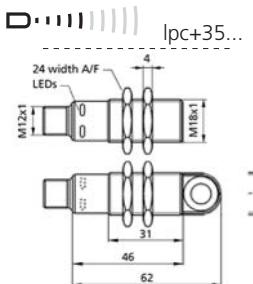
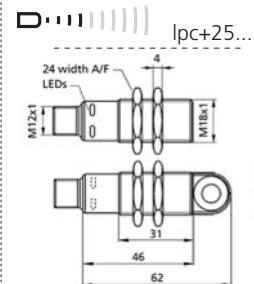
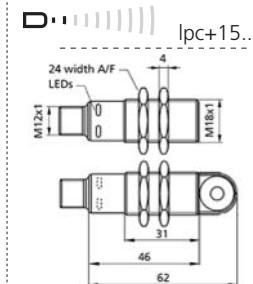
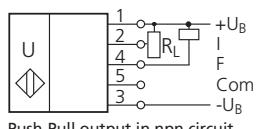
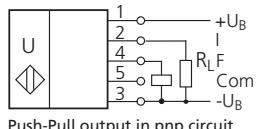
- Filter at F01
- Filter strength at P00

Operating modes

Three operating modes are available:

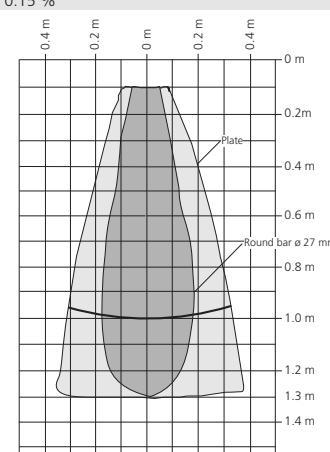
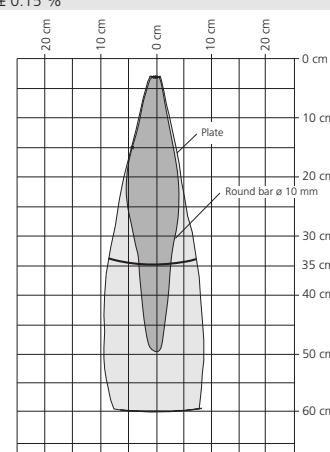
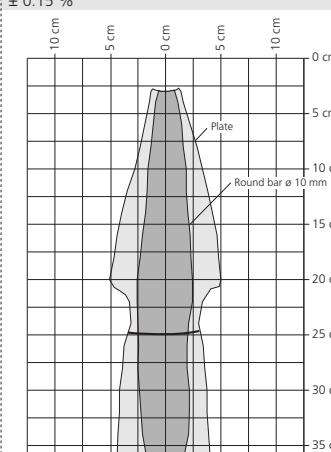
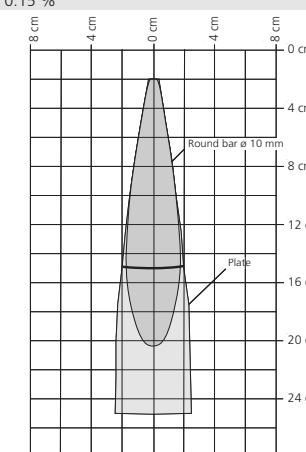







- Operation with one detect point
The switched output is set when the object falls below the set detect point.
- Window mode
The switched output is set when the object is within the set window.
- Two-way reflective barrier
The switched output is set when the object is between sensor and fixed reflector.

Synchronisation







If under multiple sensor operation the assembly distance falls below the values shown in fig. 2, the internal synchronisation should be used. For this purpose set the switched outputs of all sensors in accordance with the diagram »Sensor adjustment with the Teach-in procedure«.

Then switch-on the multi-function output »Com« (pin 5) to »Teach-in« and »synchronisation« (see »Further settings«).

Finally interconnect each pin 5 of the sensors to be synchronised.





	<img

Technical data

blind zone	20 mm
operating range	150 mm
maximum range	250 mm
angle of beam spread	see detection zone
transducer frequency	380 kHz
resolution	0,1 mm
reproducibility	± 0,15 %

detection zones
for different objects:
The dark grey areas represent the zone where it is easy to recognise the normal reflector (round bar). This indicates the typical operating range of the sensors. The light grey areas represent the zone where a very large reflector – for instance a plate – can still be recognized. The requirement here is for an optimum alignment to the sensor. It is not possible to evaluate ultrasonic reflections outside this area.

accuracy	±1 % (temperature drift internally compensated)
operating voltage U_B	10 - 30 V DC, reverse polarity protection (Class 2)
voltage ripple	±10 %

no-load current consumption	< 60 mA
housing	brass sleeve, nickel-plated, plastic parts: PBT; ultrasonic transducer: polyurethane foam, epoxy resin with glass content

max. tightening torque of nuts	15 Nm
class of protection per EN 60 529	IP 67

type of connection	5-pin M12 circular plug
control	Teach-in via pin 5 (Com)

indicators	LED green (operation)
	LED yellow (state of output)

programmable	Teach-in, LinkControl
synchronisation	internal synchronisation up to 10 sensors

operating temperature	-25°C to +70°C
storage temperature	-40°C to +85°C

switched output	Push-Pull, U_B -3 V, $-U_B$ +3 V, I_{max} = 100 mA
	switchable NO/CNC, short-circuit-proof

switching hysteresis ¹⁾	2 mm
switching frequency ¹⁾	25 Hz

response time ¹⁾	32 ms
time delay before availability ¹⁾	< 300 ms

analogue output 4-20mA	$R_L \geq 100 \text{ k}\Omega$, rising/falling characteristic
operating voltage U	$R_L \geq 100 \text{ k}\Omega$, at $U_B \geq 15 \text{ V}$, short-circuit-proof

norm conformity	EN 60947-5-2
order no. directly radiating	lpc+15/CFI

weight	35 g
order no. angular head	lpc+15/WK/CFI

weight	40 g
1) Can be programmed with LinkControl	

1) Can be programmed with LinkControl	
1) Can be programmed with LinkControl	

1) Can be programmed with LinkControl	
1) Can be programmed with LinkControl	

1) Can be programmed with LinkControl	
1) Can be programmed with LinkControl	

1) Can be programmed with LinkControl	
1) Can be programmed with LinkControl	

1) Can be programmed with LinkControl	
1) Can be programmed with LinkControl	

1) Can be programmed with LinkControl	
1) Can be programmed with LinkControl	

1) Can be programmed with LinkControl	
1) Can be programmed with LinkControl	

1) Can be programmed with LinkControl	
1) Can be programmed with LinkControl	

1) Can be programmed with LinkControl	
1) Can be programmed with LinkControl	

1) Can be programmed with LinkControl	
1) Can be programmed with LinkControl	

1) Can be programmed with LinkControl	
1) Can be programmed with LinkControl	

1) Can be programmed with LinkControl	
1) Can be programmed with LinkControl	

1) Can be programmed with LinkControl	
1) Can be programmed with LinkControl	

1) Can be programmed with LinkControl	
1) Can be programmed with LinkControl	

1) Can be programmed with LinkControl	
1) Can be programmed with LinkControl	

1) Can be programmed with LinkControl	
1) Can be programmed with LinkControl	

1) Can be programmed with LinkControl	
1) Can be programmed with LinkControl	

1) Can be programmed with LinkControl	
1) Can be programmed with LinkControl	

1) Can be programmed with LinkControl	
1) Can be programmed with LinkControl	

1) Can be programmed with LinkControl	
1) Can be programmed with LinkControl	

1) Can be programmed with LinkControl	
1) Can be programmed with LinkControl	

1) Can be programmed with LinkControl	
1) Can be programmed with LinkControl	

1) Can be programmed with LinkControl	
1) Can be programmed with LinkControl	

1) Can be programmed with LinkControl	
1) Can be programmed with LinkControl	

1) Can be programmed with LinkControl	
1) Can be programmed with LinkControl	

1) Can be programmed with LinkControl	
1) Can be programmed with LinkControl	

1) Can be programmed with LinkControl	
1) Can be programmed with LinkControl	

1) Can be programmed with LinkControl	
1) Can be programmed with LinkControl	

1) Can be programmed with LinkControl	
1) Can be programmed with LinkControl	

1) Can be programmed with LinkControl	
1) Can be programmed with LinkControl	

1) Can be programmed with LinkControl	
1) Can be programmed with LinkControl	

1) Can be programmed with LinkControl	
1) Can be programmed with LinkControl	

1) Can be programmed with LinkControl	
1) Can be programmed with LinkControl	

1) Can be programmed with LinkControl	
1) Can be programmed with LinkControl	