

< HVMOSFET MODULE >

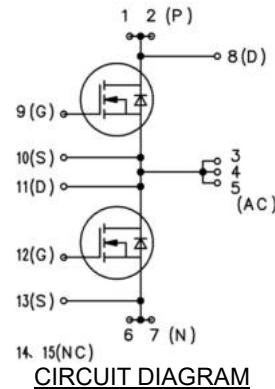
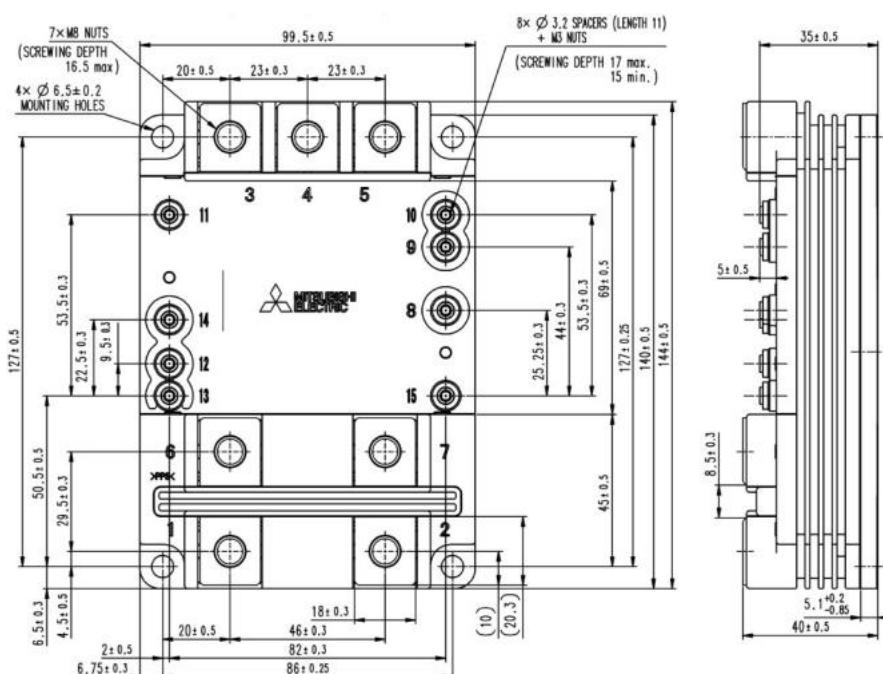
FMF400DC-66BEW

HIGH POWER SWITCHING USE

INSULATED TYPE

 2nd gen. HVMOSFET (High Voltage Metal Oxide Semiconductor Field Effect Transistor) Modules

FMF400DC-66BEW



- I_D 400 A
- V_{DSX} 3300 V
- 2-elements in a Pack
- Insulated Type
- SiC SBD embedded MOSFET

APPLICATION

Traction drives, High Reliability Converters / Inverters, DC choppers

OUTLINE DRAWING & CIRCUIT DIAGRAM

Dimensions in mm

No.	Terminals
1, 2	DC+, D(P)
3, 4, 5	AC, S(P), D(N)
6, 7	DC-, S(N)
8	D(P)
9	G(P)
10	S(P)
11	D(N)
12	G(N)
13	S(N)
14, 15	NC

< HVMOSFET MODULE >

FMF400DC-66BEW

HIGH POWER SWITCHING USE

INSULATED TYPE

2nd gen. HVMOSFET (High Voltage Metal Oxide Semiconductor Field Effect Transistor) Modules**MAXIMUM RATINGS**

Item	Symbol	Condition	Ratings	Unit
Drain-Source voltage, specified gate-source voltage	V_{DSX}	$V_{GS} = -7 \text{ V}$	$T_j = -40 \sim 175 \text{ }^\circ\text{C}$	3300
Gate-Source voltage	V_{GSS}	$V_{DS} = 0 \text{ V}$	$T_j = -40 \sim 175 \text{ }^\circ\text{C}$	± 20
Drain current	I_D	$V_{GS} = 17 \text{ V}$, $T_c = 105 \text{ }^\circ\text{C}$, AC terminal output current (Note 1)		400
Drain current	I_{DP}	Non repetitive pulse	$T_j = T_{op}$	800
Reverse drain current (FWD forward current)	I_S	$V_{GS} = -7 \text{ V}$, $T_c = 103 \text{ }^\circ\text{C}$, AC terminal output current (Note 1)(Note 2)		400
Reverse drain current (FWD forward current)	I_{SP}	Non repetitive pulse (Note 2)	$T_j = T_{op}$	800
Total power dissipation	P_{tot}	$T_c = 25 \text{ }^\circ\text{C}$, MOSFET part (Note 3)		4160
Isolation voltage	V_{isol}	Charge part to the baseplate RMS sinusoidal, 60Hz 1min		6000
Partial discharge charge	Q_{pd}	Charged part to the baseplate RMS sinusoidal, 60 Hz 1min $V1 = 3500 \text{ V}$, $V2 = 2600 \text{ V}$ (acc. to IEC 61287-1)		10
Junction temperature	T_j	Maximum temperature range in off-state or on-state(non-switching)		$-40 \sim 175$
Case temperature	T_c	Maximum case temperature range in on-state		$-40 \sim 150$
Storage temperature	T_{sig}	Maximum case temperature range in off-state		$-50 \sim 175$
Operating junction temperature	T_{op}	Maximum junction temperature range for switching operation		$-40 \sim 175$
Short-circuit withstand pulse duration	t_{psc}	$V_{DD} = 2500 \text{ V}$, $V_{GS} = +17 / -7 \text{ V}$, $L_s = 40 \text{ nH}$, $V_{GS50\%}-V_{GS50\%}$	$T_j = T_{op}$	1.7
Short circuit energy	E_{sc}	$V_{DD} = 2500 \text{ V}$, $F(t)$ weibull=1%	$T_j = T_{op}$	17.5
Non-repetitive surge forward current	I_{FSM}		$T_j = 175 \text{ }^\circ\text{C}$	2.9
I^2t value	I^2t		$T_j = 175 \text{ }^\circ\text{C}$	43
				kA^2s

ELECTRICAL CHARACTERISTICS

Item	Symbol	Condition	Limits			Unit
			Min.	Typ.	Max.	
Gate-source leakage current	I_{GSS}	$V_{DS} = 0 \text{ V}$, $V_{GS} = V_{GSS}$	$T_j = 25 \text{ }^\circ\text{C}$	-1.0	-	1.0
			$T_j = 150 \text{ }^\circ\text{C}$	-	0.002	-
Drain-source cut-off current	I_{DSX}	$V_{DS} = V_{DSX}$, $V_{GS} = -7 \text{ V}$	$T_j = 150 \text{ }^\circ\text{C}$	-	0.025	-
			$T_j = 175 \text{ }^\circ\text{C}$	-	0.040	1.5
Gate-source threshold voltage	$V_{GS(th)}$	$V_{DS} = 10 \text{ V}$, $I_D = 40 \text{ mA}$	$T_j = 25 \text{ }^\circ\text{C}$	1.60	2.10	2.60
			$T_j = 150 \text{ }^\circ\text{C}$	-	1.50	-
			$T_j = 175 \text{ }^\circ\text{C}$	0.90	1.45	1.90
Drain-source on resistance	$r_{DS(on)}$	$V_{DS} = V_{DS(on)}$, $V_{GS} = 17 \text{ V}$	$T_j = 25 \text{ }^\circ\text{C}$	-	4.00	-
			$T_j = 150 \text{ }^\circ\text{C}$	-	8.63	-
			$T_j = 175 \text{ }^\circ\text{C}$	-	10.00	12.13
Drain-source on-state voltage	$V_{DS(on)}$	$I_D = 400 \text{ A}$, $V_{GS} = 17 \text{ V}$, (Note 4)	$T_j = 25 \text{ }^\circ\text{C}$	-	1.60	-
			$T_j = 150 \text{ }^\circ\text{C}$	-	3.45	-
			$T_j = 175 \text{ }^\circ\text{C}$	-	4.00	4.85
Source-drain voltage	$V_{SD(on)}$	$I_S = 400 \text{ A}$, $V_{GS} = 17 \text{ V}$, (Note 4)	$T_j = 25 \text{ }^\circ\text{C}$	-	1.45	-
			$T_j = 150 \text{ }^\circ\text{C}$	-	3.25	-
			$T_j = 175 \text{ }^\circ\text{C}$	-	3.80	4.40
Source-drain voltage	V_{SD}	$I_S = 400 \text{ A}$, $V_{GS} = 0 \text{ V}$, (Note 4)	$T_j = 25 \text{ }^\circ\text{C}$	-	2.00	-
			$T_j = 150 \text{ }^\circ\text{C}$	-	3.85	-
			$T_j = 175 \text{ }^\circ\text{C}$	-	4.35	5.00
Source-drain voltage	$V_{SD(off)}$	$I_S = 400 \text{ A}$, $V_{GS} = -7 \text{ V}$, (Note 4)	$T_j = 25 \text{ }^\circ\text{C}$	-	2.00	-
			$T_j = 150 \text{ }^\circ\text{C}$	-	3.85	-
			$T_j = 175 \text{ }^\circ\text{C}$	-	4.35	5.00
Input capacitance	C_{iss}	$V_{DS} = 10 \text{ V}$, $V_{GS} = 0 \text{ V}$, $f = 100\text{kHz}$, 1/2 module	$T_j = 25 \text{ }^\circ\text{C}$	-	55	-
Output capacitance	C_{oss}	$V_{DS} = 10 \text{ V}$, $V_{GS} = 0 \text{ V}$, $f = 100\text{kHz}$, 1/2 module	$T_j = 25 \text{ }^\circ\text{C}$	-	35	-
Reverse transfer capacitance	C_{rss}	$V_{DS} = 10 \text{ V}$, $V_{GS} = 0 \text{ V}$, $f = 100\text{kHz}$, 1/2 module	$T_j = 25 \text{ }^\circ\text{C}$	-	1.4	-
Gate charge	Q_G	$V_{DD} = 1800 \text{ V}$, $I_D = 400 \text{ A}$, $V_{GS} = +17 / -7 \text{ V}$, 1/2 module	$T_j = 25 \text{ }^\circ\text{C}$	-	1.65	-
					μC	

< HVMOSFET MODULE >

FMF400DC-66BEW

HIGH POWER SWITCHING USE

INSULATED TYPE

2nd gen. HVMOSFET (High Voltage Metal Oxide Semiconductor Field Effect Transistor) Modules**ELECTRICAL CHARACTERISTICS**

Item	Symbol	Condition	Limits			Unit
			Min.	Typ.	Max.	
Turn-on delay time	$t_{d(on)}$	$V_{DD} = 1800 \text{ V}$, $I_D = 400 \text{ A}$, $V_{GS} = +17 / -7 \text{ V}$, $L_s = 40 \text{ nH}$	$T_j = 175 \text{ }^\circ\text{C}$	-	-	0.41 μs
Rise time	t_r	$V_{DD} = 1800 \text{ V}$, $I_D = 400 \text{ A}$, $V_{GS} = +17 / -7 \text{ V}$, $L_s = 40 \text{ nH}$	$T_j = 175 \text{ }^\circ\text{C}$	-	-	0.24 μs
Turn-on (switching) energy per pulse 10% integral	$E_{on(10\%)}$	$V_{DD} = 1800 \text{ V}$, $I_D = 400 \text{ A}$, $V_{GS} = +17 / -7 \text{ V}$, $L_s = 40 \text{ nH}$ $R_{G(on)} = 1.5 \Omega$, $R_{G(off)} = 3.0 \Omega$, Inductive load	$T_j = 25 \text{ }^\circ\text{C}$	-	0.13	- J
			$T_j = 150 \text{ }^\circ\text{C}$	-	0.11	- J
			$T_j = 175 \text{ }^\circ\text{C}$	-	0.11	- J
Turn-on (switching) energy per pulse	E_{on}	$V_{DD} = 1800 \text{ V}$, $I_D = 400 \text{ A}$, $V_{GS} = +17 / -7 \text{ V}$, $L_s = 40 \text{ nH}$ $R_{G(on)} = 1.5 \Omega$, $R_{G(off)} = 3.0 \Omega$, Inductive load	$T_j = 25 \text{ }^\circ\text{C}$	-	0.14	- J
			$T_j = 150 \text{ }^\circ\text{C}$	-	0.12	- J
			$T_j = 175 \text{ }^\circ\text{C}$	-	0.12	- J
Total capacitive charge	Q_C	$V_{DD} = 1800 \text{ V}$, $I_D = 400 \text{ A}$, $V_{GS} = +17 / -7 \text{ V}$, $L_s = 40 \text{ nH}$ $R_{G(on)} = 1.5 \Omega$, $R_{G(off)} = 3.0 \Omega$, Inductive load	$T_j = 25 \text{ }^\circ\text{C}$	-	5.4	- μC
			$T_j = 150 \text{ }^\circ\text{C}$	-	6.3	- μC
			$T_j = 175 \text{ }^\circ\text{C}$	-	6.3	- μC
Diode turn-off energy (per pulse)	$E_{off_Diode(10\%)}$	$V_{DD} = 1800 \text{ V}$, $I_D = 400 \text{ A}$, $V_{GS} = +17 / -7 \text{ V}$, $L_s = 40 \text{ nH}$ $R_{G(on)} = 1.5 \Omega$, $R_{G(off)} = 3.0 \Omega$, Inductive load	$T_j = 25 \text{ }^\circ\text{C}$	-	0.80	- mJ
			$T_j = 150 \text{ }^\circ\text{C}$	-	-	- mJ
			$T_j = 175 \text{ }^\circ\text{C}$	-	1.80	- mJ
Diode switching off energy of diode	E_{off_Diode}	$V_{DD} = 1800 \text{ V}$, $I_D = 400 \text{ A}$, $V_{GS} = +17 / -7 \text{ V}$, $L_s = 40 \text{ nH}$ $R_{G(on)} = 1.5 \Omega$, $R_{G(off)} = 3.0 \Omega$, Inductive load	$T_j = 25 \text{ }^\circ\text{C}$	-	1.00	- mJ
			$T_j = 150 \text{ }^\circ\text{C}$	-	-	- mJ
			$T_j = 175 \text{ }^\circ\text{C}$	-	2.00	- mJ
Turn-off delay time	$t_{d(off)}$	$V_{DD} = 1800 \text{ V}$, $I_D = 400 \text{ A}$, $V_{GS} = +17 / -7 \text{ V}$, $L_s = 40 \text{ nH}$	$T_j = 175 \text{ }^\circ\text{C}$	-	-	0.94 μs
Fall time	t_f	$V_{DD} = 1800 \text{ V}$, $I_D = 400 \text{ A}$, $V_{GS} = +17 / -7 \text{ V}$, $L_s = 40 \text{ nH}$	$T_j = 175 \text{ }^\circ\text{C}$	-	-	0.40 μs
Turn-off (switching) energy per pulse 10% integral	$E_{off(10\%)}$	$V_{DD} = 1800 \text{ V}$, $I_D = 400 \text{ A}$, $V_{GS} = +17 / -7 \text{ V}$, $L_s = 40 \text{ nH}$ $R_{G(on)} = 1.5 \Omega$, $R_{G(off)} = 3.0 \Omega$, Inductive load	$T_j = 25 \text{ }^\circ\text{C}$	-	0.05	- J
			$T_j = 150 \text{ }^\circ\text{C}$	-	0.06	- J
			$T_j = 175 \text{ }^\circ\text{C}$	-	0.06	- J
Turn-off (switching) energy per pulse	E_{off}	$V_{DD} = 1800 \text{ V}$, $I_D = 400 \text{ A}$, $V_{GS} = +17 / -7 \text{ V}$, $L_s = 40 \text{ nH}$ $R_{G(on)} = 1.5 \Omega$, $R_{G(off)} = 3.0 \Omega$, Inductive load	$T_j = 25 \text{ }^\circ\text{C}$	-	0.05	- J
			$T_j = 150 \text{ }^\circ\text{C}$	-	0.06	- J
			$T_j = 175 \text{ }^\circ\text{C}$	-	0.06	- J

THERMAL CHARACTERISTICS

Item	Symbol	Condition	Limits			Unit
			Min.	Typ.	Max.	
Thermal resistance junction to case	$R_{th(j-c)}$	Junction to Case, MOSFET + embeded SBD part, 1/2 module	-	-	36.0	K/kW
Contact thermal resistance case to heatsink	$R_{th(c-s)}$	Case to heat sink, $\lambda_{grease} = 1 \text{ W/m}\cdot\text{K}$, $D_{(c-s)} = 70 \mu\text{m}$, 1/2 module	-	28.5	-	K/kW

< HVMOSFET MODULE >

FMF400DC-66BEW

HIGH POWER SWITCHING USE

INSULATED TYPE

2nd gen. HVMOSFET (High Voltage Metal Oxide Semiconductor Field Effect Transistor) Modules

MECHANICAL CHARACTERISTICS

Item	Symbol	Condition	Limits			Unit
			Min.	Typ.	Max.	
Mounting torque	M _t	Main terminal screw M8 This is the case when installing the product on the bus bar	7.0	-	22.0	N·m
Mounting torque	M _t	Mounting screw M6	3.0	-	6.0	N·m
Mounting torque	M _t	Auxiliary terminals screw M3	0.4	-	0.8	N·m
mass	m	-	-	0.8	-	kg
Comparative tracking index	CTI	-	600	-	-	-
Clearance distance in air	d _a	Between main terminal	8.0	-	-	mm
Creepage distance along surface	d _s	-	32.0	-	-	mm
Internal inductance, D-S	L _{PDS}	Between DC+ and DC- (terminal1,2-6,7)	-	17	-	nH
	L _{PDS}	Between DC+ and AC (terminal1,2-3,4,5)	-	45	-	nH
	L _{PDS}	Between AC and DC- (terminal3,4,5-6,7)	-	45	-	nH

Note 1. Control Case Temperature (T_c) so that the junction temperature (T_j) does not exceed the maximum rating.

Note 2. The symbols represent characteristics of the anti-parallel, source to drain free-wheel diode (FWDi).

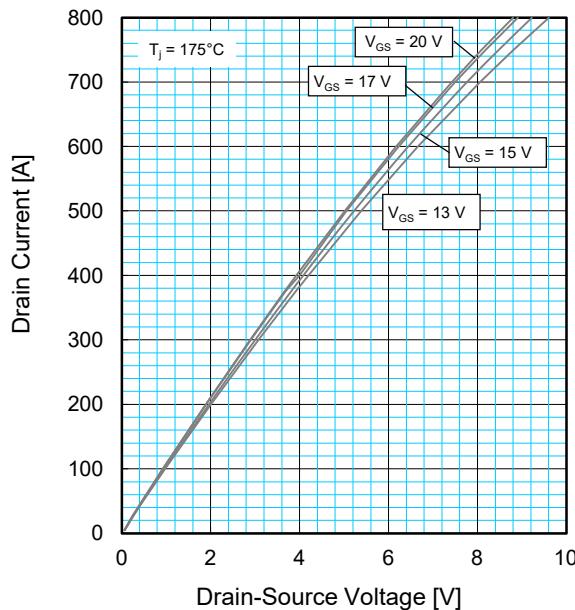
Note 3. Junction temperature (T_j) should not exceed T_{jmax} rating.

Note 4. Pulse width and repetition rate should be such as to cause negligible temperature rise.

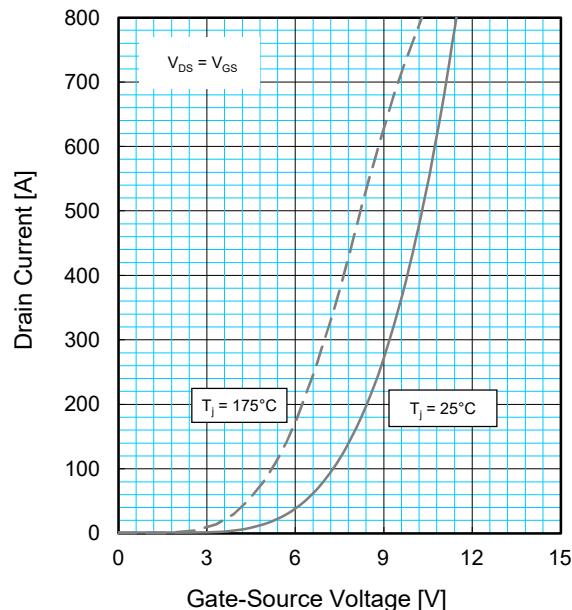
Products falling under the subject item No. 2 (41) 3 of Appended Table 1 of the Export Trade Control Order.

< HVMOSFET MODULE >

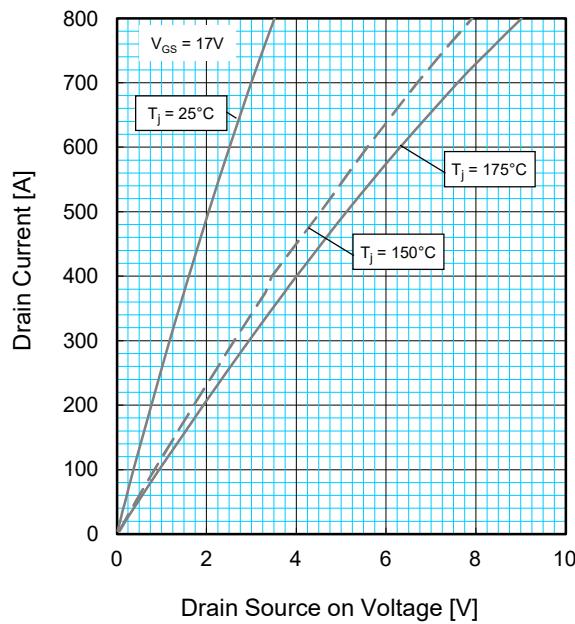
FMF400DC-66BEW

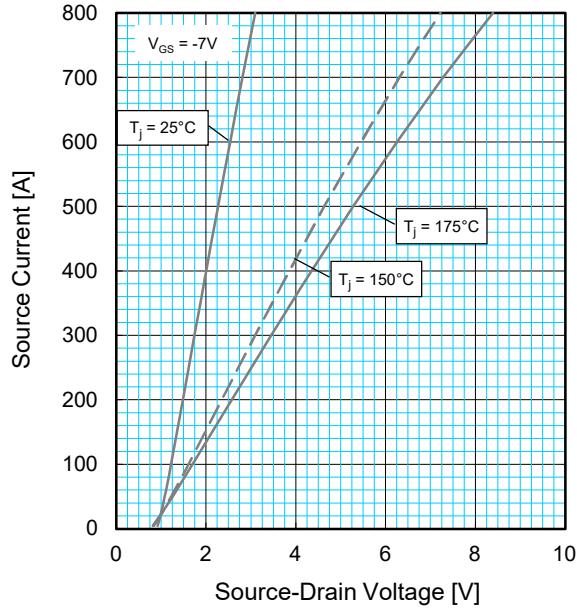

HIGH POWER SWITCHING USE

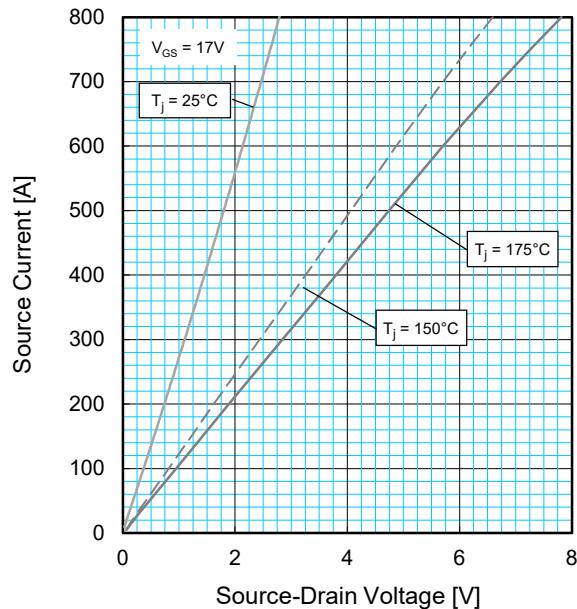
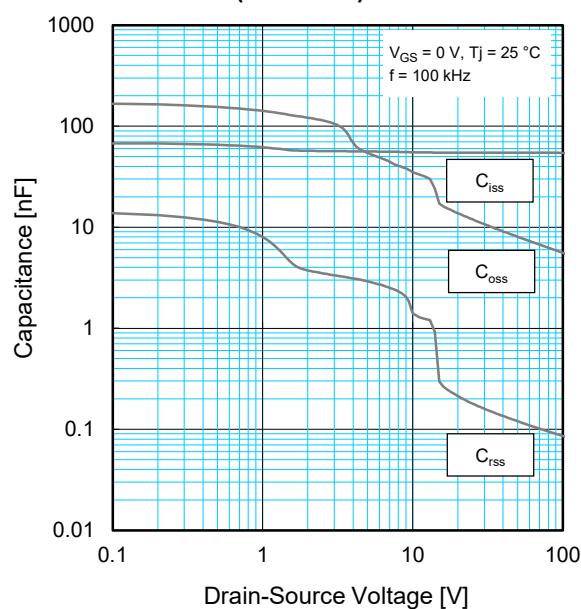
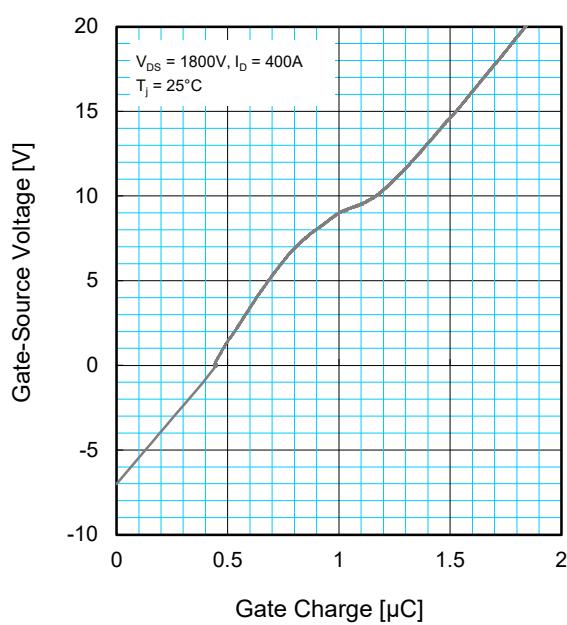
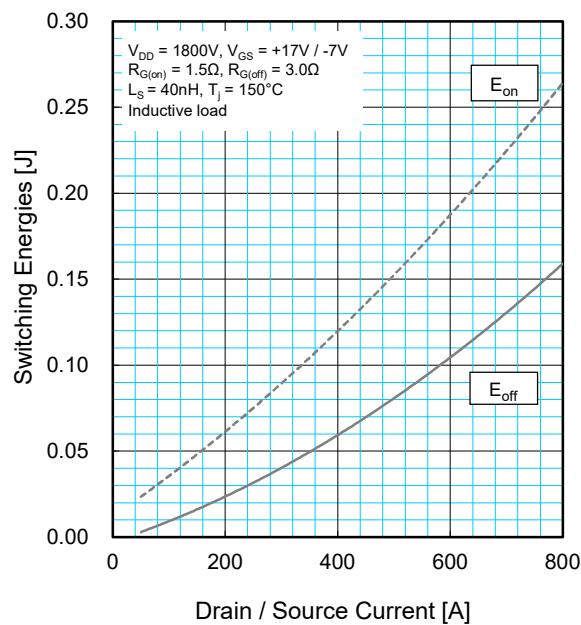
INSULATED TYPE


2nd gen. HVMOSFET (High Voltage Metal Oxide Semiconductor Field Effect Transistor) Modules

PERFPRMANCE CURVES


**OUTPUT CHARACTERISTICS
(TYPICAL)**


**TRANSFER CHARACTERISTICS
(TYPICAL)**

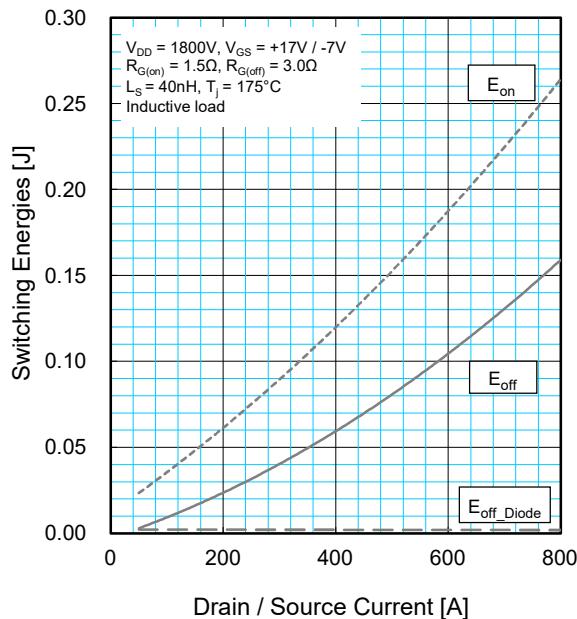
**DRAIN-SOURCE ON VOLTAGE
CHARACTERISTICS (TYPICAL)**

**FREE-WHEEL DIODE FORWARD
CHARACTERISTICS (TYPICAL)**

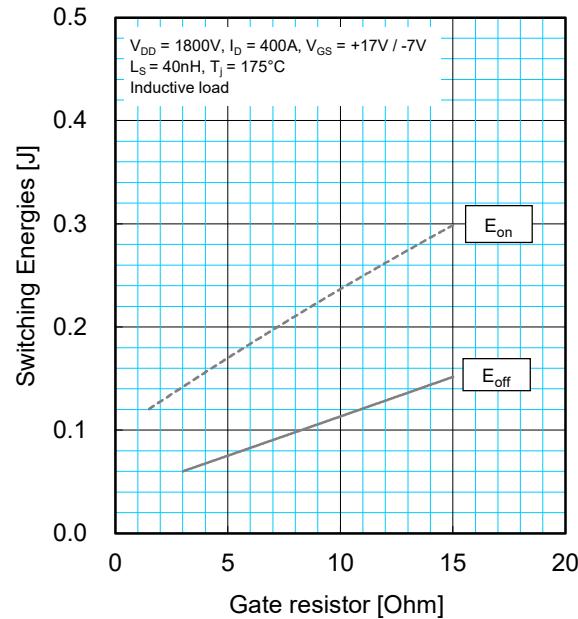
PERFORMANCE CURVES**FREE-WHEEL DIODE FORWARD CHARACTERISTICS (TYPICAL)****CAPACITANCE CHARACTERISTICS (TYPICAL)****GATE CHARGE CHARACTERISTICS (TYPICAL)****HALF-BRIDGE SWITCHING ENERGY CHARACTERISTICS (TYPICAL)**

< HVMOSFET MODULE >

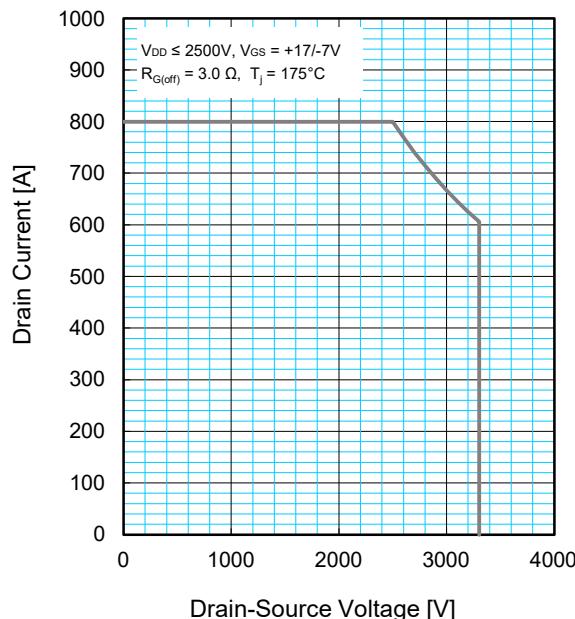
FMF400DC-66BEW

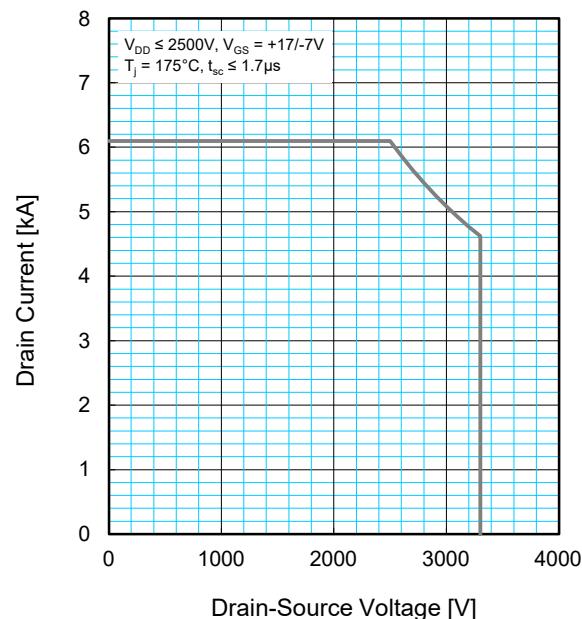

HIGH POWER SWITCHING USE

INSULATED TYPE


2nd gen. HVMOSFET (High Voltage Metal Oxide Semiconductor Field Effect Transistor) Modules

PERFORMANCE CURVES


HALF-BRIDGE SWITCHING ENERGY CHARACTERISTICS (TYPICAL)

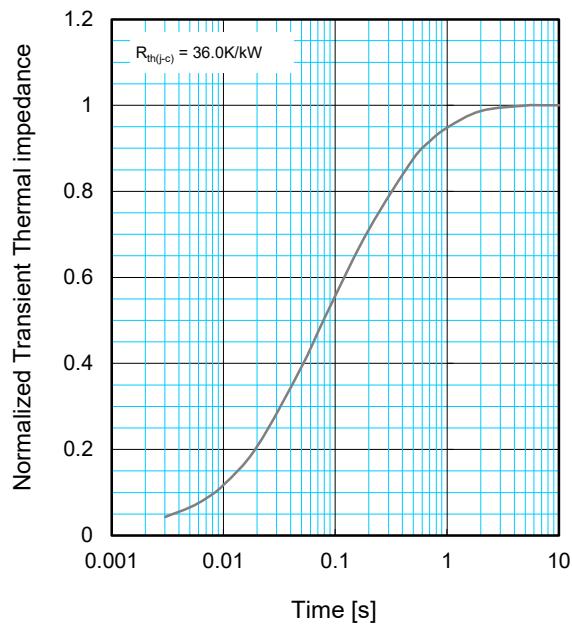

HALF-BRIDGE SWITCHING ENERGY CHARACTERISTICS (TYPICAL)

REVERSE BIAS SAFE OPERATING AREA (RBSOA)

SHORT CIRCUIT SAFE OPERATING AREA (SCSOA)

< HVMOSFET MODULE >

FMF400DC-66BEW


HIGH POWER SWITCHING USE

INSULATED TYPE

2nd gen. HVMOSFET (High Voltage Metal Oxide Semiconductor Field Effect Transistor) Modules

PERFORMANCE CURVES

TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS

$$Z_{th(j-c)}(t) = \sum_{i=1}^n R_i \left\{ 1 - \exp \left(-\frac{t}{\tau_i} \right) \right\}$$

	1	2	3	4
$R_i / R_{th} :$	0.0078	0.1975	0.3553	0.4393
$\tau_i [\text{sec.}] :$	0.0001	0.7324	0.0381	0.1698

< HVMOSFET MODULE >

FMF400DC-66BEW

HIGH POWER SWITCHING USE

INSULATED TYPE

2nd gen. HVMOSFET (High Voltage Metal Oxide Semiconductor Field Effect Transistor) Modules**Important Notice**

The information contained in this datasheet shall in no event be regarded as a guarantee of conditions or characteristics. This product has to be used within its specified maximum ratings, and is subject to customer's compliance with any applicable legal requirement, norms and standards.

Except as otherwise explicitly approved by Mitsubishi Electric Corporation in a written document signed by authorized representatives of Mitsubishi Electric Corporation, our products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

In usage of power semiconductor, there is always the possibility that trouble may occur with them by the reliability lifetime such as Power Cycle, Thermal Cycle or others, or when used under special circumstances (e.g. condensation, high humidity, dusty, salty, highlands, environment with lots of organic matter / corrosive gas / explosive gas, or situations which terminals of semiconductor products receive strong mechanical stress). Therefore, please pay sufficient attention to such circumstances. Further, depending on the technical requirements, our semiconductor products may contain environmental regulation substances, etc. If there is necessity of detailed confirmation, please contact our nearest sales branch or distributor.

The contents or data contained in this datasheet are exclusively intended for technically trained staff. Customer's technical departments should take responsibility to evaluate the suitability of Mitsubishi Electric Corporation product for the intended application and the completeness of the product data with respect to such application. In the customer's research and development, please evaluate it not only with a single semiconductor product but also in the entire system, and judge whether it's applicable. As required, pay close attention to the safety design by installing appropriate fuse or circuit breaker between a power supply and semiconductor products to prevent secondary damage. Please also pay attention to the application note and the related technical information.

Keep safety first in your circuit designs!

Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- These materials are intended as a reference to assist our customers in the selection of the Mitsubishi Electric Semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
- Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Electric Semiconductor product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Mitsubishi Electric Corporation by various means, including the Mitsubishi Electric Semiconductor home page
(<https://www.MitsubishiElectric.com/semiconductors/>).

- When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Electric Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.
- If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.

Any diversion or re-export contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

- Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Electric Semiconductor product distributor for further details on these materials or the products contained therein.