

STARPOWER

SEMICONDUCTOR

IGBT

GD75HCU120C8S

Molding Type Module

1200V/75A 4 in one-package

General Description

STARPOWER IGBT Power Module provides ultrafast switching speed as well as short circuit ruggedness. It's designed for the applications such as electronic welder and inductive heating.

Features

- NPT IGBT technology
- 10 μ s short circuit capability
- Low switching losse
- $V_{CE(sat)}$ with positive temperature coefficient
- Square RBSOA
- Low inductance case
- Fast & soft reverse recovery anti-parallel FWD
- Isolated copper baseplate using DBC technology

Typical Applications

- Switching mode power supplies
- Inductive heating
- Electronic welder

IGBT-inverter $T_c=25^\circ\text{C}$ unless otherwise noted

Maximum Rated Values

Symbol	Description	GD75HCU120C8S	Units
V_{CES}	Collector-Emitter Voltage @ $T_i=25^\circ\text{C}$	1200	V
V_{GES}	Gate-Emitter Voltage @ $T_i=25^\circ\text{C}$	± 20	V
I_C	Collector Current @ $T_c=25^\circ\text{C}$ @ $T_c=80^\circ\text{C}$	110 75	A
I_{CM}	Pulsed Collector Current $t_p=1\text{ms}$	150	A
P_{tot}	Total Power Dissipation @ $T_j=150^\circ\text{C}$	595	W

Off Characteristics

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Units
$V_{(BR)CES}$	Collector-Emitter Breakdown Voltage	$T_j=25^\circ\text{C}$	1200			V
I_{CES}	Collector Cut-Off Current	$V_{CE}=V_{CES}, V_{GE}=0\text{V}, T_j=25^\circ\text{C}$			5.0	mA
I_{GES}	Gate-Emitter Leakage Current	$V_{GE}=V_{GES}, V_{CE}=0\text{V}, T_j=25^\circ\text{C}$			400	nA

On Characteristics

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Units
$V_{GE(th)}$	Gate-Emitter Threshold Voltage	$I_C=1.5\text{mA}, V_{CE}=V_{GE}, T_j=25^\circ\text{C}$	4.8	5.5	6.3	V
$V_{CE(sat)}$	Collector to Emitter Saturation Voltage	$I_C=75\text{A}, V_{GE}=15\text{V}, T_j=25^\circ\text{C}$		2.90	3.35	V
		$I_C=75\text{A}, V_{GE}=15\text{V}, T_j=125^\circ\text{C}$		3.60		

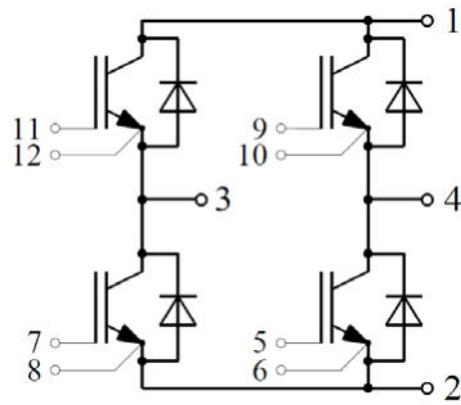
Switching Characteristics

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Units
$t_{d(on)}$	Turn-On Delay Time	$V_{CC}=600V, I_C=75A, R_G=8.6\Omega, V_{GE}=\pm 15V, T_j=25^\circ C$		205		ns
t_r	Rise Time			49		ns
$t_{d(off)}$	Turn-Off Delay Time			262		ns
t_f	Fall Time			137		ns
E_{on}	Turn-On Switching Loss			6.30		mJ
E_{off}	Turn-Off Switching Loss			2.46		mJ
$t_{d(on)}$	Turn-On Delay Time	$V_{CC}=600V, I_C=75A, R_G=8.6\Omega, V_{GE}=\pm 15V, T_j=125^\circ C$		205		ns
t_r	Rise Time			50		ns
$t_{d(off)}$	Turn-Off Delay Time			275		ns
t_f	Fall Time			170		ns
E_{on}	Turn-On Switching Loss			8.25		mJ
E_{off}	Turn-Off Switching Loss			3.62		mJ
C_{ies}	Input Capacitance	$V_{CE}=25V, f=1MHz, V_{GE}=0V$		5.18		nF
C_{oes}	Output Capacitance			0.78		nF
C_{res}	Reverse Transfer Capacitance			0.35		nF
I_{SC}	SC Data	$t_p \leq 10\mu s, V_{GE}=15V, T_j=125^\circ C, V_{CC}=900V, V_{CEM} \leq 1200V$		660		A
Q_G	Gate Charge	$V_{CC}=600V, I_C=75A, V_{GE}=-15 \dots +15V$		0.5		µC
R_{Gint}	Internal Gate Resistance			/		Ω

Diode-inverter $T_C=25^\circ C$ unless otherwise noted

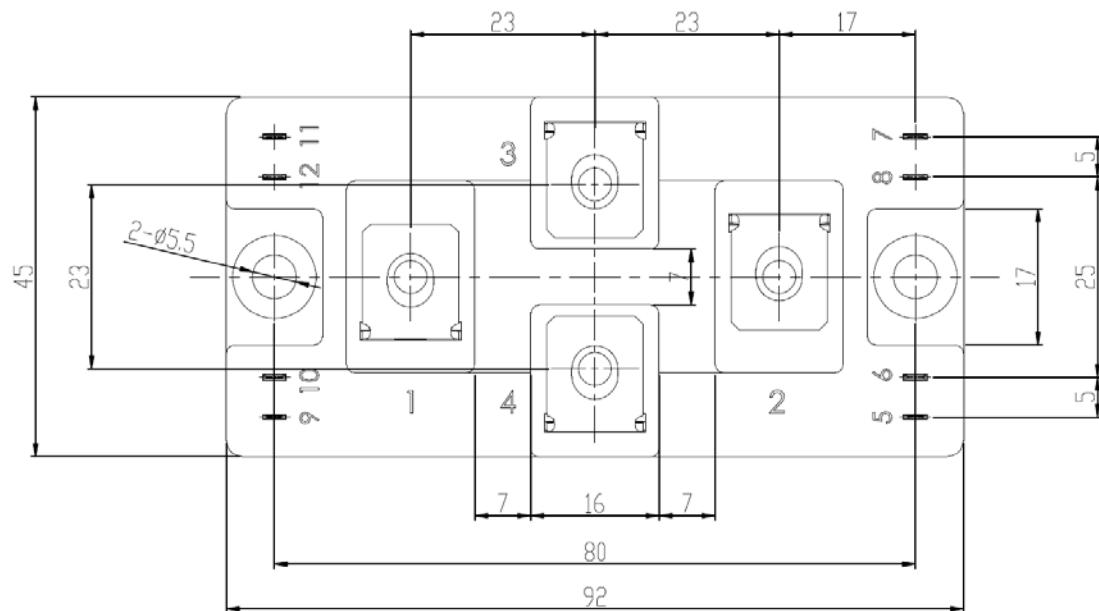
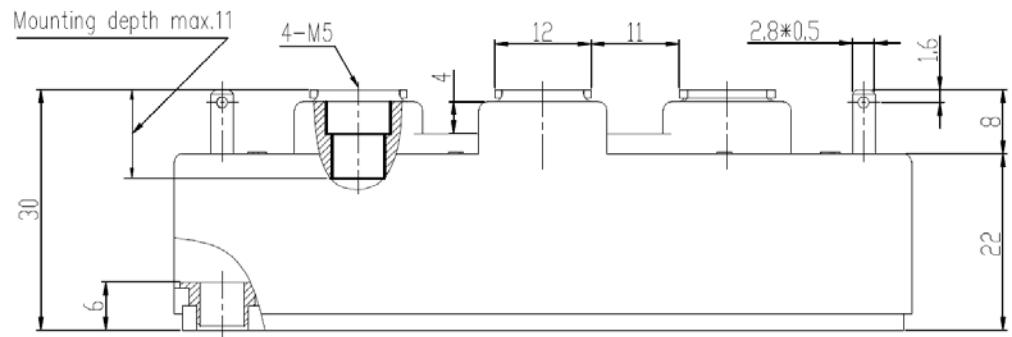
Maximum Rated Values

Symbol	Description	GD75HCU120C8S	Units
V_{RRM}	Repetitive Peak Reverse Voltage @ $T_j=25^\circ C$	1200	V
I_F	DC Forward Current	30	A
I_{FRM}	Repetitive Peak Forward Current $t_p=1ms$	60	A


Characteristics Values

Symbol	Parameter	Test Conditions		Min.	Typ.	Max.	Units
V_F	Diode Forward Voltage	$I_F=30A$	$T_j=25^\circ C$		1.90	2.30	V
			$T_j=125^\circ C$		1.80		
Q_r	Recovered Charge	$I_F=30A, V_R=600V, R_G=15\Omega, V_{GE}=-15V$	$T_j=25^\circ C$		2.6		µC
			$T_j=125^\circ C$		4.2		
I_{RM}	Peak Reverse Recovery Current	$V_R=600V, R_G=15\Omega, V_{GE}=-15V$	$T_j=25^\circ C$		20		A
			$T_j=125^\circ C$		23		
E_{rec}	Reverse Recovery Energy	$V_R=600V, R_G=15\Omega, V_{GE}=-15V$	$T_j=25^\circ C$		1.31		mJ
			$T_j=125^\circ C$		2.08		

IGBT Module



Symbol	Parameter	Min.	Typ.	Max.	Units
V_{ISO}	Isolation Voltage RMS,f=50Hz,t=1min	2500			V
$R_{θJC}$	Junction-to-Case (per IGBT-inverter) Junction-to-Case (per Diode-inverter)			0.210 0.927	K/W
$R_{θCS}$	Case-to-Sink (Conductive grease applied)		0.046		K/W
T_{jmax}	Maximum Junction Temperature			150	°C
T_{jop}	Operating Junction Temperature	-40		125	°C
T_{STG}	Storage Temperature Range	-40		125	°C
Mounting Torque	Power Terminal Screw:M5 Mounting Screw:M5	2.5 3.0		5.0 5.0	N.m
G	Weight of Module		300		g

Equivalent Circuit Schematic

Package Dimensions

Dimensions in Millimeters

Terms and Conditions of Usage

The data contained in this product datasheet is exclusively intended for technically trained staff. You and your technical departments will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to such application.

This product data sheet is describing the characteristics of this product for which a warranty is granted. Any such warranty is granted exclusively pursuant the terms and conditions of the supply agreement. There will be no guarantee of any kind for the product and its characteristics.

Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of our product, please contact the sales office, which is responsible for you (see www.powersemi.cc). For those that are specifically interested we may provide application notes.

Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact the sales office, which is responsible for you.

Should you intend to use the Product in aviation applications, in health or live endangering or life support applications, please notify.

If and to the extent necessary, please forward equivalent notices to your customers.
Changes of this product data sheet are reserved.