

STARPOWER

SEMICONDUCTOR

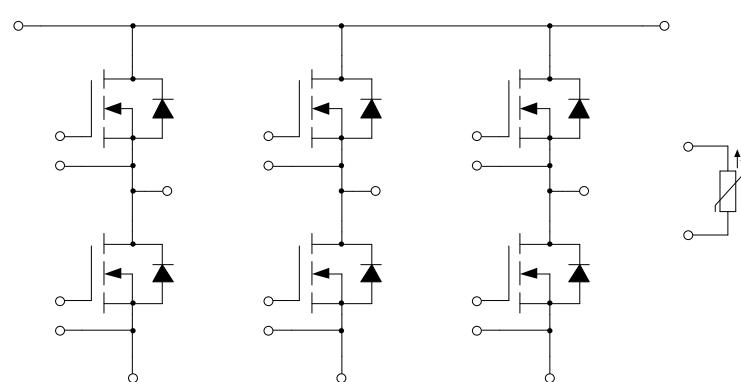
MOSFET

MD15FSR120L2SF

1200V/15A 6 in one-package

General Description

STARPOWER MOSFET Power Module provides very low $R_{DS(on)}$ as well as optimized intrinsic diode. It's designed for the applications such SMPS and solar power.


Features

- SiC power MOSFET
- Low $R_{DS(on)}$
- Optimized intrinsic reverse diode
- Avalanche ruggedness
- Low inductance case
- substrate for low thermal resistance
- Isolated heatsink using DBC technology

Typical Applications

- Uninterruptible power supply
- Solar Power
- Switching mode power supply

Equivalent Circuit Schematic

Absolute Maximum Ratings $T_C=25^\circ\text{C}$ unless otherwise noted**MOSFET**

Symbol	Description	Value	Unit
V_{DSS}	Drain-Source Voltage	1200	V
V_{GSS}	Gate-Source Voltage	-4/+22	V
I_D	Drain Current @ $T_C=25^\circ\text{C}$ @ $T_C=100^\circ\text{C}$	23 16	A
I_{DM}	Pulsed Drain Current	52	A
P_D	Maximum Power Dissipation @ $T_j=175^\circ\text{C}$	98	W

Inverse Diode

Symbol	Description	Value	Unit
I_S	Source Current @ $T_C=100^\circ\text{C}$	TBD	A

Module

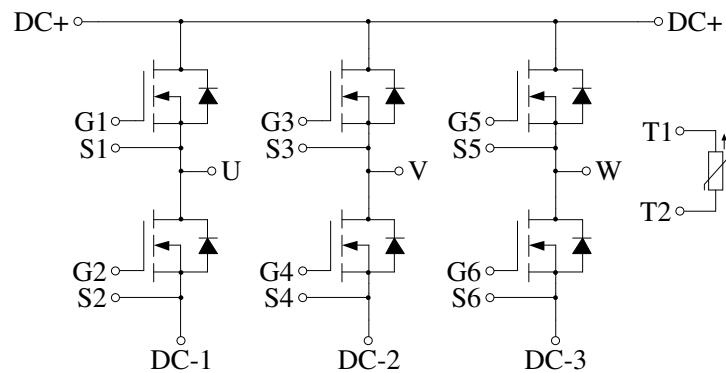
Symbol	Description	Value	Unit
T_{jmax}	Maximum Junction Temperature	175	°C
T_{jop}	Operating Junction Temperature	-40 to +150	°C
T_{STG}	Storage Temperature Range	-40 to +125	°C
V_{ISO}	Isolation Voltage RMS,f=50Hz,t=1min	2500	V

MOSFET Characteristics $T_C=25^\circ\text{C}$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$R_{DS(on)}$	Static Drain-Source On-Resistance	$I_D=12\text{A}, V_{GS}=18\text{V}, T_j=25^\circ\text{C}$		62	78	$\text{m}\Omega$
		$I_D=12\text{A}, V_{GS}=18\text{V}, T_j=150^\circ\text{C}$		124		
$V_{GS(th)}$	Gate-Source Threshold Voltage	$I_D=6.45\text{mA}, V_{DS}=10\text{V}, T_j=25^\circ\text{C}$	2.8		4.8	V
g_{fs}	Forward Transconductance	$V_{DS}=10\text{V}, I_D=12\text{A}, T_j=25^\circ\text{C}$		8.3		S
I_{DSS}	Drain-Source Leakage Current	$V_{DS}=V_{DSS}, V_{GS}=0\text{V}, T_j=25^\circ\text{C}$			80	μA
I_{GSS}	Gate-Source Leakage Current	$V_{GS}=V_{GSS}, V_{DS}=0\text{V}, T_j=25^\circ\text{C}$			100	nA
R_{Gint}	Internal Gate Resistance			4.0		Ω
C_{iss}	Input Capacitance	$V_{GS}=0\text{V}, V_{DS}=800\text{V}, f=1.0\text{MHz}$		1498		pF
C_{oss}	Output Capacitance			45		pF
C_{rss}	Reverse Transfer Capacitance			3		pF
Q_g	Total Gate Charge	$I_D=12\text{A}, V_{DS}=800\text{V}, V_{GS}=18\text{V}$		64		nC
Q_{gs}	Gate-Source Charge			14		nC
Q_{gd}	Gate-Drain ("Miller") Charge			17		nC
$t_{d(on)}$	Turn-On Delay Time	$V_{DS}=800\text{V}, I_D=12\text{A}, R_G=0\Omega, V_{GS}=0/18\text{V}, T_j=25^\circ\text{C}$		4.4		ns
t_r	Rise Time			11		ns
$t_{d(off)}$	Turn-Off Delay Time			22		ns
t_f	Fall Time			10		ns
E_{on}	Turn-On Switching Loss	$V_{DS}=800\text{V}, I_D=12\text{A}, R_G=0\Omega, V_{GS}=0/18\text{V}, T_j=25^\circ\text{C}$		0.13		mJ
E_{off}	Turn-Off Switching Loss			0.01		mJ

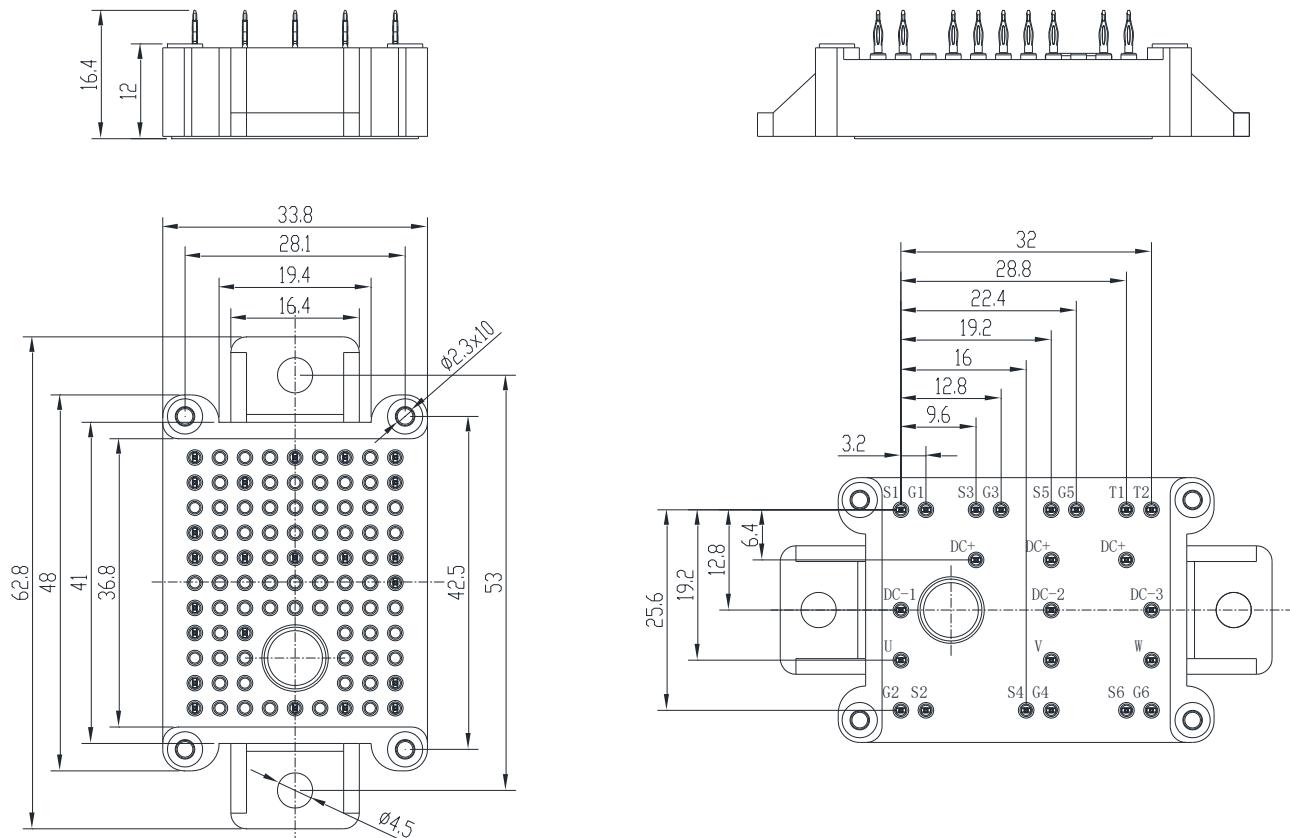
Inverse Diode Characteristics $T_C=25^\circ\text{C}$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
V_F	Diode Forward Voltage	$I_S=12\text{A}, V_{GS}=0\text{V}, T_j=25^\circ\text{C}$		3.3		V
t_{rr}	Diode Reverse Recovery Time	$V_R=800\text{V}, I_S=12\text{A}, \text{di}/\text{dt}=3800\text{A}/\mu\text{s}, V_{GS}=0\text{V}, T_j=25^\circ\text{C}$		8.1		ns
Q_r	Diode Reverse Recovery Charge			105		nC
I_{rm}	Peak Reverse Recovery Current			26		A


NTC Characteristics $T_C=25^\circ\text{C}$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
R_{25}	Rated Resistance			5.0		$\text{k}\Omega$
$\Delta R/R$	Deviation of R_{100}	$T_C=100^\circ\text{C}, R_{100}=493.3\Omega$	-5		5	%
P_{25}	Power Dissipation				20.0	mW
$B_{25/50}$	B-value	$R_2=R_{25}\exp[B_{25/50}(1/T_2 - 1/(298.15\text{K}))]$		3375		K
$B_{25/80}$	B-value	$R_2=R_{25}\exp[B_{25/80}(1/T_2 - 1/(298.15\text{K}))]$		3411		K
$B_{25/100}$	B-value	$R_2=R_{25}\exp[B_{25/100}(1/T_2 - 1/(298.15\text{K}))]$		3433		K

Module Characteristics $T_C=25^\circ\text{C}$ unless otherwise noted


Symbol	Parameter	Min.	Typ.	Max.	Unit
R_{thJC}	Junction-to-Case (per MOSFET)		1.384	1.522	K/W
R_{thCH}	Case-to-Heatsink (per MOSFET)		0.348		
	Case-to-Heatsink (per Module)		0.058		K/W
F	Mounting Force Per Clamp	20		50	N.m
G	Weight of Module		24		g

Circuit Schematic

Package Dimensions

Dimensions in Millimeters

Terms and Conditions of Usage

The data contained in this product datasheet is exclusively intended for technically trained staff. You and your technical departments will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to such application.

This product data sheet is describing the characteristics of this product for which a warranty is granted. Any such warranty is granted exclusively pursuant the terms and conditions of the supply agreement. There will be no guarantee of any kind for the product and its characteristics.

Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of our product, please contact the sales office, which is responsible for you (see www.powersemi.cc). For those that are specifically interested we may provide application notes.

Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact the sales office, which is responsible for you.

Should you intend to use the Product in aviation applications, in health or live endangering or life support applications, please notify.

If and to the extent necessary, please forward equivalent notices to your customers.
Changes of this product data sheet are reserved.