

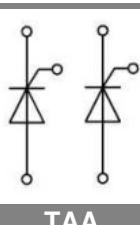
SEMITOP®2

Two separated thyristors

SK 100 TAA

Target Data

Features


- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DBC)
- Glass passivated thyristor chips
- Up to 1600 reverse voltage
- High surge currents

Typical Applications*

- Brake chopper
- Soft starters

V_{RSM}	V_{RRM}, V_{DRM}	$I_T = 100 \text{ A}$ ($T_s = 80^\circ\text{C}$)
V	V	SK 100 TAA 08
900	800	SK 100 TAA 12
1300	1200	SK 100 TAA 16
1700	1600	

Characteristics		$T_s = 25^\circ\text{C}$ unless otherwise specified	
Symbol	Conditions	Values	Units
I_T	$T_s = 100^\circ\text{C}$	65	A
I_T	$T_s = 80^\circ\text{C}$	100	A
			A
I_{TSM}/I_{FSM}	$T_{vj} = 25 \text{ (125)}^\circ\text{C}; 10 \text{ ms}$	2000 (1800)	A
I^2t	$T_{vj} = 25 \text{ (125)}^\circ\text{C}; \text{half sine wave, } 10 \text{ ms}$	20000 (16200)	A ² s
T_{stg}		-40 ... +125	°C
T_{solder}	terminals, 10 s	260	°C
Thyristor			
$(dv/dt)_{cr}$	$T_{vj} = 125^\circ\text{C}$	1000	V/μs
$(di/dt)_{cr}$	$T_{vj} = 125^\circ\text{C}; f = 50 \dots 60 \text{ Hz}$	50	A/μs
t_q	$T_{vj} = 125^\circ\text{C}; \text{typ.}$	80	μs
I_H	$T_{vj} = 25^\circ\text{C}; \text{typ. / max.}$	100 / 200	mA
I_L	$T_{vj} = 25^\circ\text{C}; R_G = 33 \Omega; \text{typ. / max.}$	200 / 500	mA
V_T	$T_{vj} = 25^\circ\text{C}; (I_T = 300 \text{ A}); \text{max.}$	1,85	V
$V_{T(TO)}$	$T_{vj} = 125^\circ\text{C}$	max. 0,9	V
r_T	$T_{vj} = 125^\circ\text{C}$	max. 3,5	mΩ
I_{DD}, I_{RD}	$T_{vj} = 125^\circ\text{C}; V_{DD} = V_{DRM}; V_{RD} = V_{RRM}$	max. 20	mA
$R_{th(j-s)}$	cont. per thyristor	0,45	K/W
T_{vj}		-40 ... +130	°C
V_{GT}	$T_{vj} = 25^\circ\text{C}; \text{d.c.}$	2	V
I_{GT}	$T_{vj} = 25^\circ\text{C}; \text{d.c.}$	100	mA
V_{GD}	$T_{vj} = 125^\circ\text{C}; \text{d.c.}$	0,25	V
I_{GD}	$T_{vj} = 125^\circ\text{C}; \text{d.c.}$	5	mA
Diode			
V_F	$T_{vj} = \text{°C}; (I_F = A); \text{max.}$		V
$V_{(TO)}$	$T_{vj} = \text{°C}$		V
r_T	$T_{vj} = \text{°C}$		mΩ
I_{RD}	$T_{vj} = \text{°C}; V_{RD} = V_{RRM}$		mA
$R_{th(j-s)}$			K/W
T_{vj}			°C
Mechanical data			
V_{isol}	AC 50Hz, r.m.s. 1min (1sec)	2500 (3000)	V
M_1	mounting torque	2	Nm
w		19	g
Case	SEMITOP®2	T 81	

TAA

SK 100 TAA

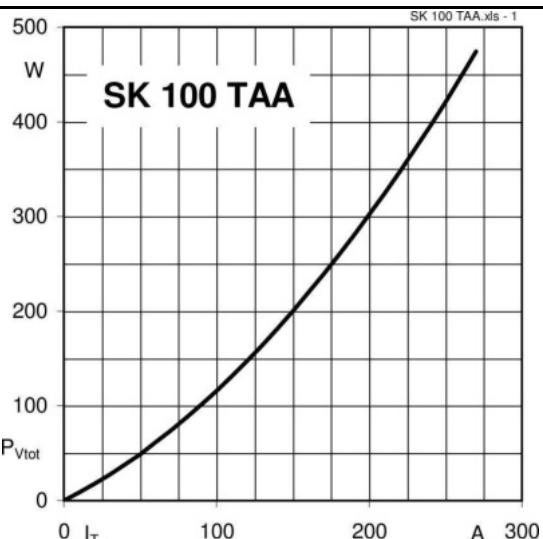


Fig. 1 Power dissipation vs. current

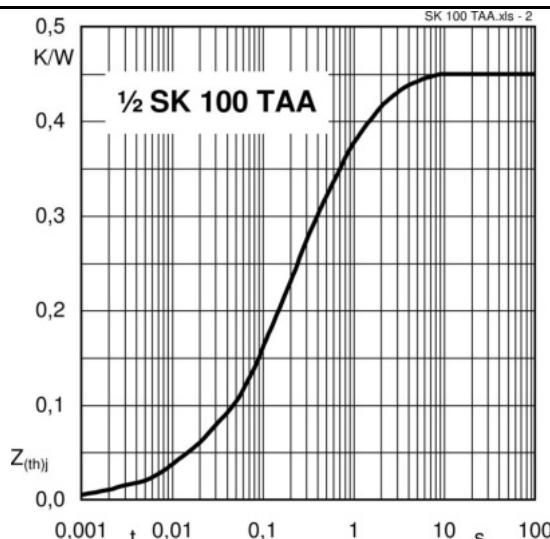


Fig. 2 Transient thermal impedance vs. time

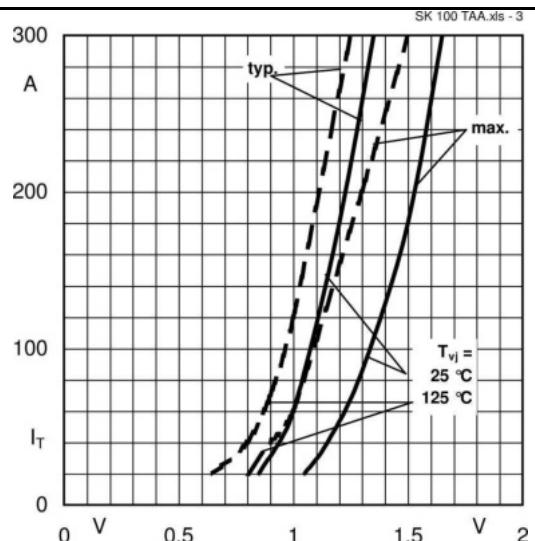


Fig. 3 Forward characteristic of single thyristor

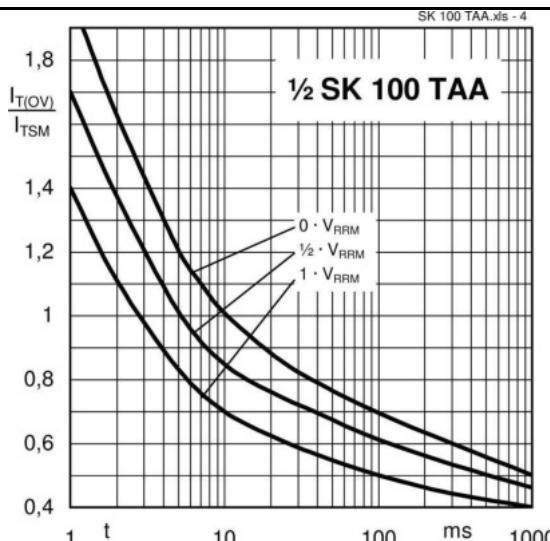
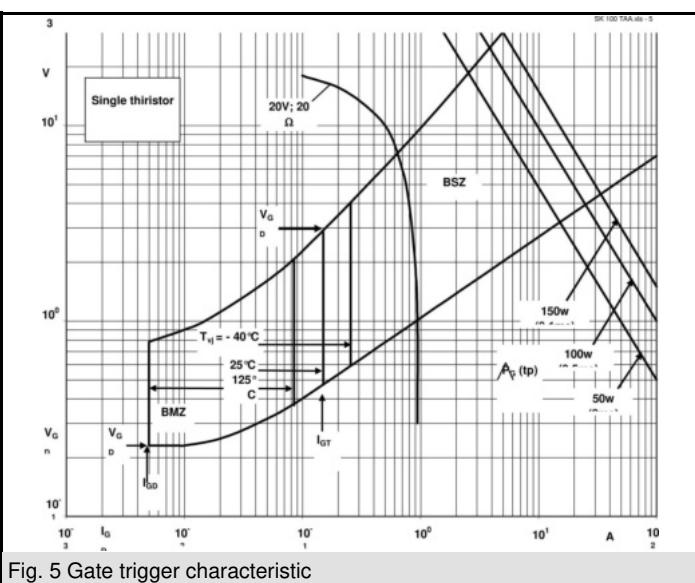
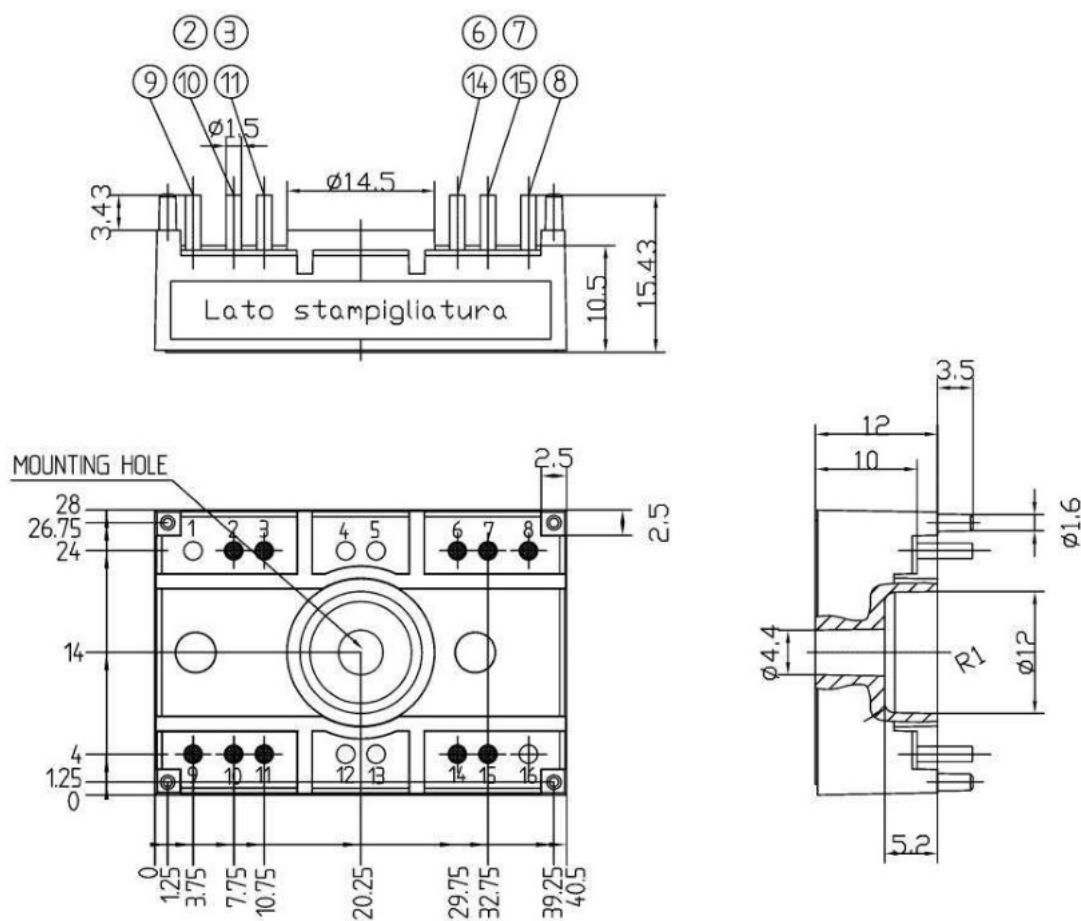
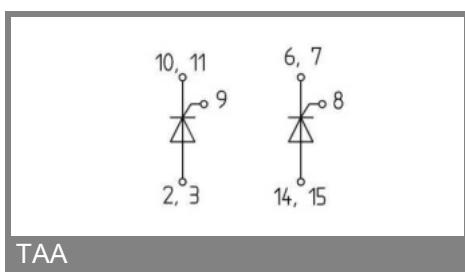


Fig. 4 Surge overload current vs. time


Fig. 5 Gate trigger characteristic

Dimensions in mm

SUGGESTED HOLEDIAMETER FOR THE SOLDER PINS AND THE MOUNTING PINS IN THE PCB: 2 mm

Case T 81 (Suggested hole diameter, in the PCB, for solder pins and plastic mounting pins: 2mm)

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.