

SEMITRANS® 2

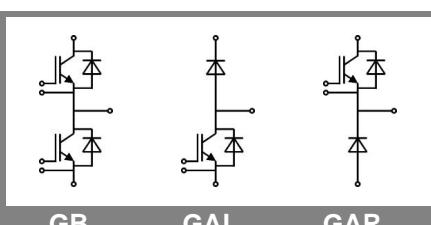
IGBT Modules

SKM 75GB123D

SKM 75GAL123D

SKM 75GAR123D

Features


- MOS input (voltage controlled)
- Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to $6 \times I_{Cnom}$
- Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding Technology
- Large clearance (10 mm) and creepage distance (20 mm)

Typical Applications*

- AC inverter drives
- UPS

Absolute Maximum Ratings		$T_c = 25^\circ\text{C}$, unless otherwise specified		
Symbol	Conditions	Values		Units
IGBT				
V_{CES}	$T_j = 25^\circ\text{C}$	1200		V
I_C	$T_j = 150^\circ\text{C}$ $T_{case} = 25^\circ\text{C}$ $T_{case} = 80^\circ\text{C}$	75	A	
		60	A	
I_{CRM}	$I_{CRM} = 2 \times I_{Cnom}$	150	A	
V_{GES}		± 20	V	
t_{psc}	$V_{CC} = 600\text{ V}$; $V_{GE} \leq 20\text{ V}$; $T_j = 125^\circ\text{C}$ $V_{CES} < 1200\text{ V}$	10	μs	
Inverse Diode				
I_F	$T_j = 150^\circ\text{C}$ $T_{case} = 25^\circ\text{C}$ $T_{case} = 80^\circ\text{C}$	75	A	
		50	A	
I_{FRM}	$I_{FRM} = 2 \times I_{Fnom}$	150	A	
I_{FSM}	$t_p = 10\text{ ms}$; sin. $T_j = 150^\circ\text{C}$	480	A	
Freewheeling Diode				
I_F	$T_j = 150^\circ\text{C}$ $T_{case} = 25^\circ\text{C}$ $T_{case} = 80^\circ\text{C}$	95	A	
		65	A	
I_{FRM}	$I_{FRM} = 2 \times I_{Fnom}$	200	A	
I_{FSM}	$t_p = 10\text{ ms}$; sin $T_j = 150^\circ\text{C}$	720	A	
Module				
$I_{t(RMS)}$		200	A	
T_{vj}		- 40 ... + 150	$^\circ\text{C}$	
T_{stg}		- 40 ... + 125	$^\circ\text{C}$	
V_{isol}	AC, 1 min.	2500	V	

Characteristics		$T_c = 25^\circ\text{C}$, unless otherwise specified		
Symbol	Conditions	min.	typ.	max.
IGBT				
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 2\text{ mA}$	4,5	5,5	6,5
I_{CES}	$V_{GE} = 0\text{ V}$, $V_{CE} = V_{CES}$ $T_j = 25^\circ\text{C}$	0,1	0,3	mA
V_{CE0}	$T_j = 25^\circ\text{C}$ $T_j = 125^\circ\text{C}$	1,4	1,6	V
r_{CE}	$V_{GE} = 15\text{ V}$ $T_j = 25^\circ\text{C}$ $T_j = 125^\circ\text{C}$	22	28	$\text{m}\Omega$
		30	38	$\text{m}\Omega$
$V_{CE(sat)}$	$I_{Cnom} = 50\text{ A}$, $V_{GE} = 15\text{ V}$ $T_j = \text{°C}_{\text{chiplev.}}$	2,5	3	V
C_{ies}		3,3	4,3	nF
C_{oes}	$V_{CE} = 25\text{ V}$, $V_{GE} = 0\text{ V}$ $f = 1\text{ MHz}$	0,5	0,6	nF
C_{res}		0,22	0,3	nF
Q_G	$V_{GE} = -8\text{ - }+20\text{ V}$	500		nC
R_{Gint}	$T_j = \text{°C}$	5		Ω
$t_{d(on)}$	$R_{Gon} = 22\text{ }\Omega$	44	100	ns
t_r		56	100	ns
E_{on}		8		mJ
$t_{d(off)}$	$R_{Goff} = 22\text{ }\Omega$ $T_j = 125^\circ\text{C}$ $V_{GE} = \pm 15\text{ V}$	380	500	ns
t_f		70	100	ns
E_{off}		5		mJ
$R_{th(j-c)}$	per IGBT		0,27	K/W

SEMITRANS® 2

IGBT Modules

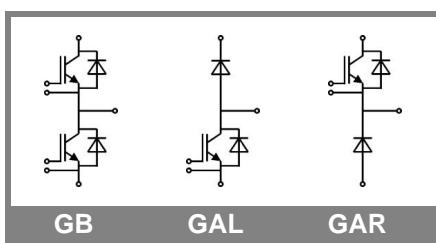
SKM 75GB123D

SKM 75GAL123D

SKM 75GAR123D

Features

- MOS input (voltage controlled)
- Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to $6 \times I_{Cnom}$
- Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding Technology
- Large clearance (10 mm) and creepage distance (20 mm)


Typical Applications*


- AC inverter drives
- UPS

Symbol	Conditions	min.	typ.	max.	Units
Inverse Diode					
$V_F = V_{EC}$	$I_{Fnom} = 50 \text{ A}; V_{GE} = 0 \text{ V}$ $T_j = 25 \text{ }^\circ\text{C}_{\text{chiplev.}}$ $T_j = 125 \text{ }^\circ\text{C}_{\text{chiplev.}}$	2	2,5		V
V_{FO}	$T_j = 25 \text{ }^\circ\text{C}$ $T_j = 125 \text{ }^\circ\text{C}$	1,1	1,2		V
r_F	$T_j = 25 \text{ }^\circ\text{C}$ $T_j = 125 \text{ }^\circ\text{C}$	18	26		$\text{m}\Omega$
I_{RRM} Q_{rr} E_{rr}	$I_F = 50 \text{ A}$ $\text{di/dt} = 800 \text{ A}/\mu\text{s}$ $V_{GE} = 0 \text{ V}; V_{CC} = 600 \text{ V}$	35			A μC mJ
$R_{th(j-c)D}$	per diode			0,6	K/W
Freewheeling Diode					
$V_F = V_{EC}$	$I_{Fnom} = 50 \text{ A}; V_{GE} = 0 \text{ V}$ $T_j = 25 \text{ }^\circ\text{C}_{\text{chiplev.}}$ $T_j = 125 \text{ }^\circ\text{C}_{\text{chiplev.}}$	1,85	2,2		V
V_{FO}	$T_j = 25 \text{ }^\circ\text{C}$ $T_j = 125 \text{ }^\circ\text{C}$	1,1	1,2		V
r_F	$T_j = 25 \text{ }^\circ\text{C}$ $T_j = 125 \text{ }^\circ\text{C}$	15	20		V
I_{RRM} Q_{rr} E_{rr}	$I_F = 50 \text{ A}$ $V_{GE} = 0 \text{ V}; V_{CC} = 600 \text{ V}$	40			A μC mJ
$R_{th(j-c)FD}$	per diode			0,5	K/W
Module					
L_{CE}		30			nH
$R_{CC'EE'}$	res., terminal-chip $T_{case} = 25 \text{ }^\circ\text{C}$ $T_{case} = 125 \text{ }^\circ\text{C}$	0,75			$\text{m}\Omega$
$R_{th(c-s)}$	per module	1			$\text{m}\Omega$
M_s	to heat sink M6	0,05			Nm
M_t	to terminals M5	3	5		Nm
w		2,5	5		Nm
		160			g

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

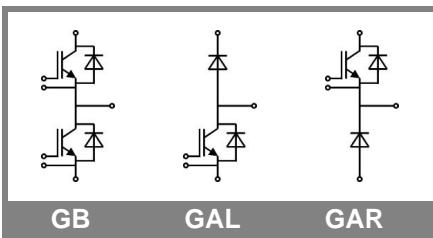
SEMITRANS® 2

IGBT Modules

SKM 75GB123D

SKM 75GAL123D

SKM 75GAR123D


Features

- MOS input (voltage controlled)
- Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to $6 \times I_{cnom}$
- Latch-up free
- Fast & soft inverse CAC diodes
- Isolated copper baseplate using DCB Direct Copper Bonding Technology
- Large clearance (10 mm) and creepage distance (20 mm)

Typical Applications*

- AC inverter drives
- UPS

Z _{th} Symbol	Conditions	Values	Units
Z _{th(j-c)I}			
R _i	i = 1	180	mk/W
R _i	i = 2	64	mk/W
R _i	i = 3	22	mk/W
R _i	i = 4	4	mk/W
tau _i	i = 1	0,0327	s
tau _i	i = 2	0,0479	s
tau _i	i = 3	0,008	s
tau _i	i = 4	0,005	s
Z _{th(j-c)D}			
R _i	i = 1	380	mk/W
R _i	i = 2	190	mk/W
R _i	i = 3	26	mk/W
R _i	i = 4	4	mk/W
tau _i	i = 1	0,0947	s
tau _i	i = 2	0,006	s
tau _i	i = 3	0,08	s
tau _i	i = 4	0,003	s

SKM 75GB123D

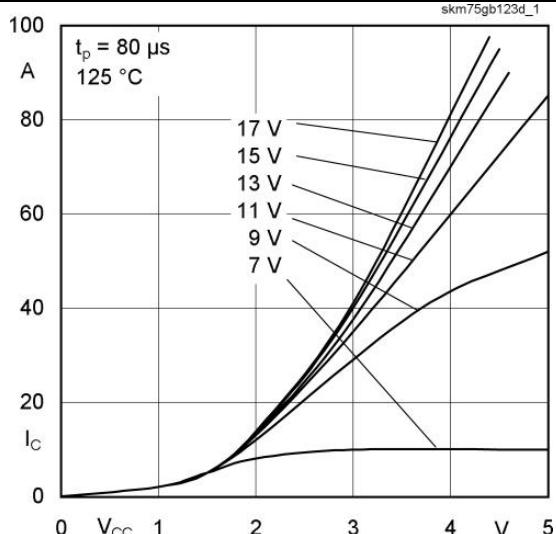


Fig. 1 Typ. output characteristic, inclusive R_{CC+EE}

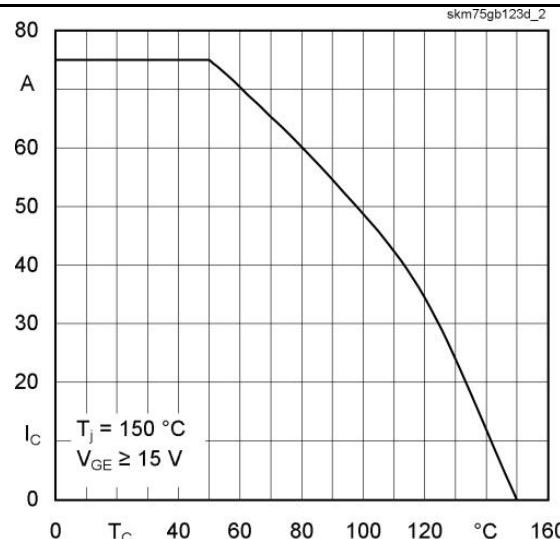


Fig. 2 Rated current vs. temperature $I_C = f (T_C)$

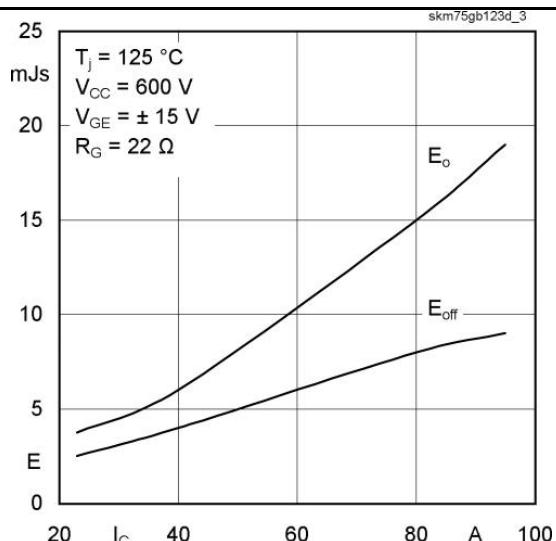


Fig. 3 Typ. turn-on /-off energy = $f (I_C)$

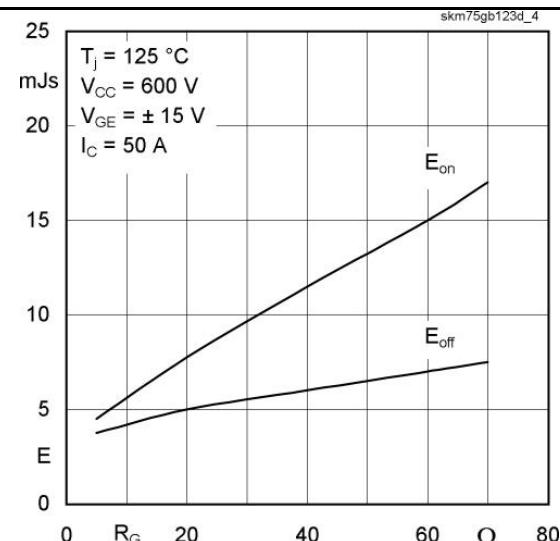


Fig. 4 Typ. turn-on /-off energy = $f (R_G)$

Fig. 5 Typ. transfer characteristic

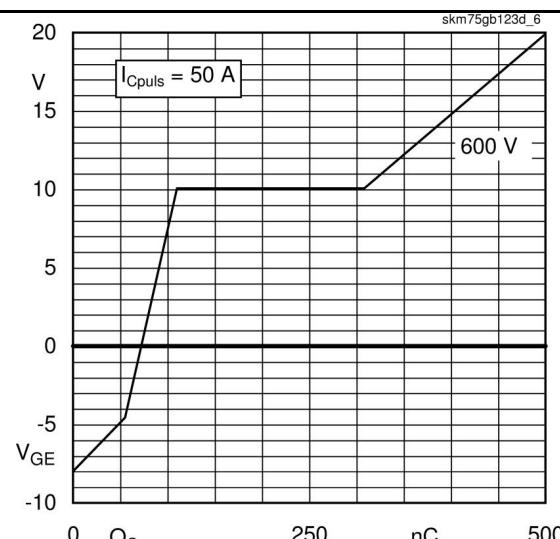
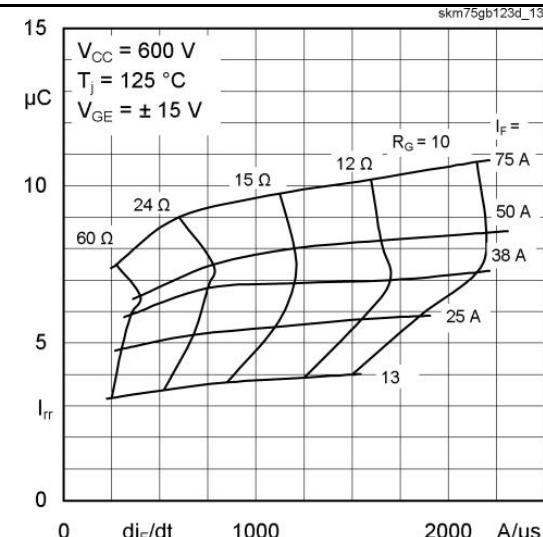
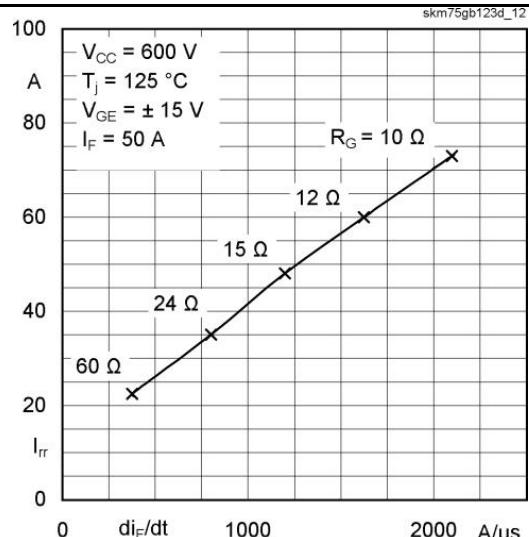
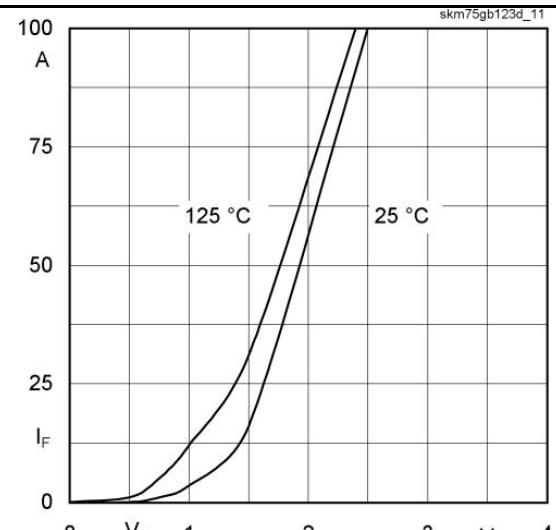
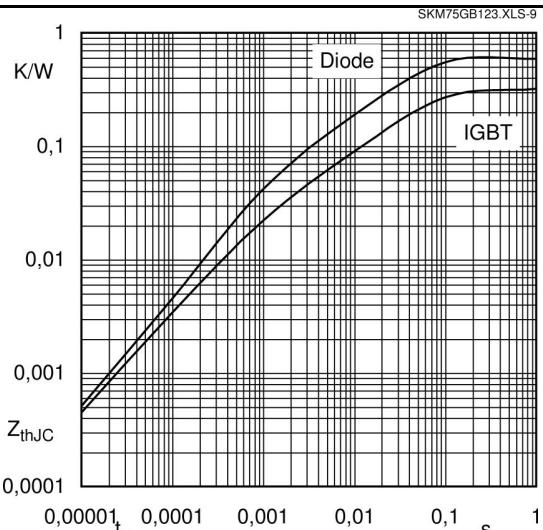
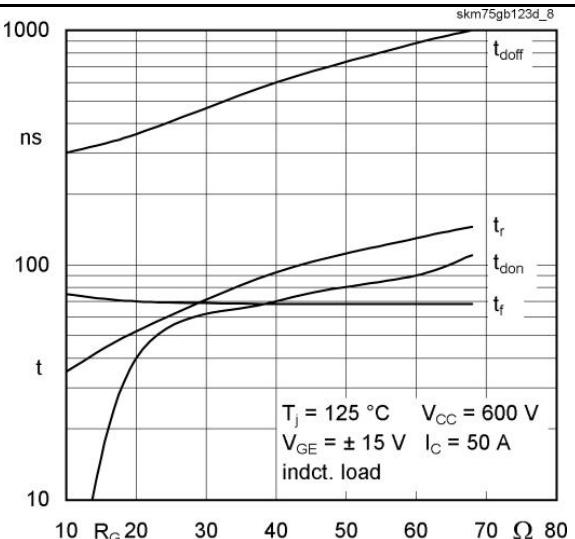
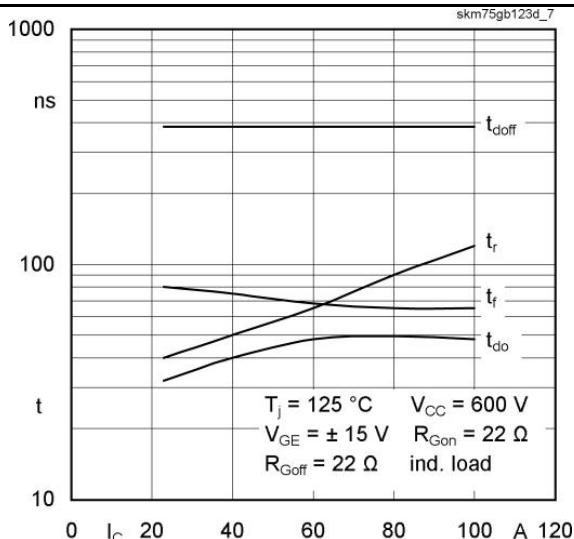
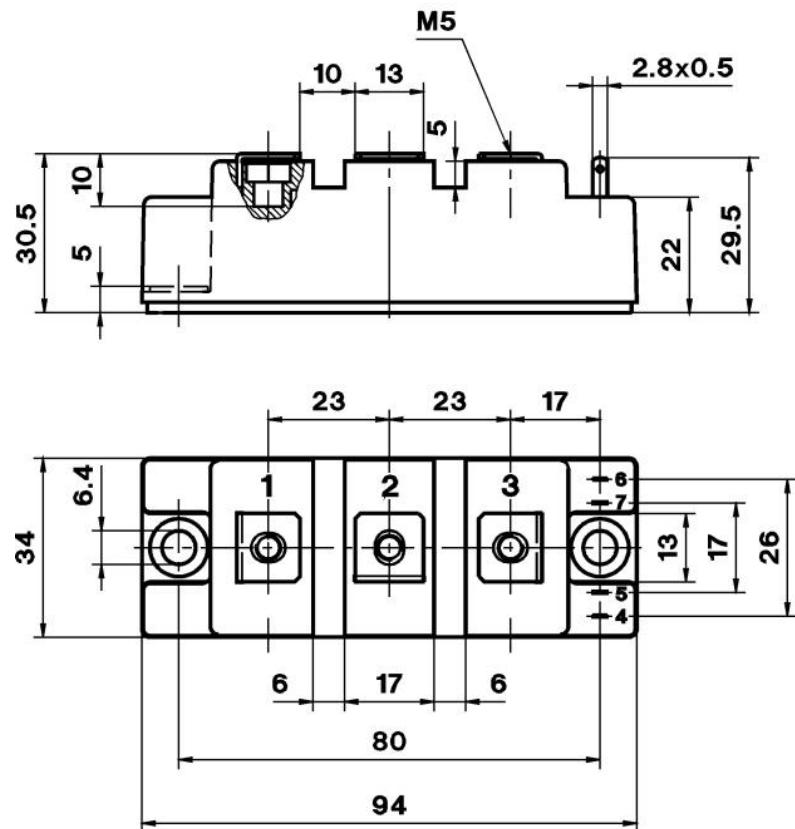
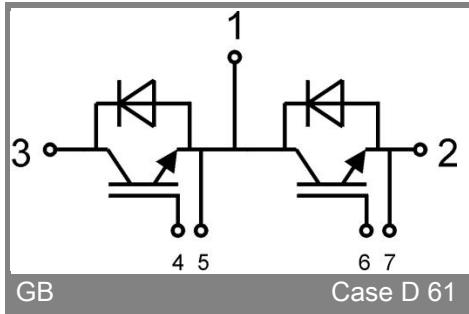








Fig. 6 Typ. gate charge characteristic

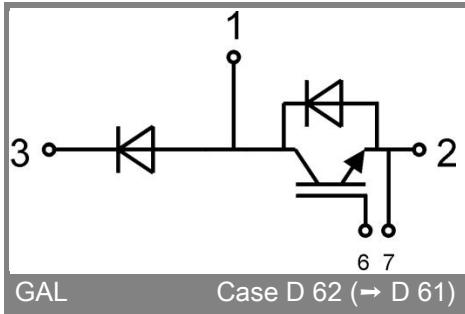
SKM 75GB123D

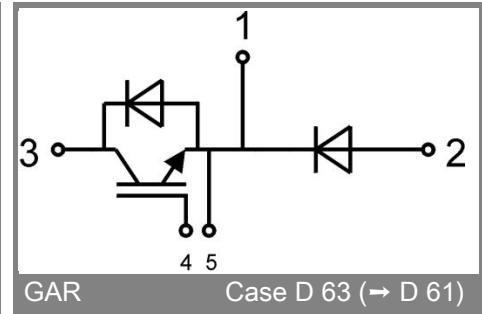


SKM 75GB123D


UL Recognized

File 63 532


CASED61


Case D 61

Case D 61

Case D 62 (→ D 61)

Case D 63 (→ D 61)