

2.13 inch E-paper Display Series WAA0213A2AAA6NXXX000

Product Specifications

Customer	Standard
Description	2.13" E-PAPER DISPLAY
Model Name	WAA0213A2AAA6NXXX000
Date	2025/05/13
Revision	1.1

Design Engineering			
Approval	Check	Design	

REVISION HISTORY

Rev	Date	Item	Page	Remark
1.0	Dec.11.2024	New Creation	ALL	
1.1	May.13.2025	Modify tolerance & Add AG film	6,7	

WINSTAR Display 3/37 2.13 inch Series

CONTENTS

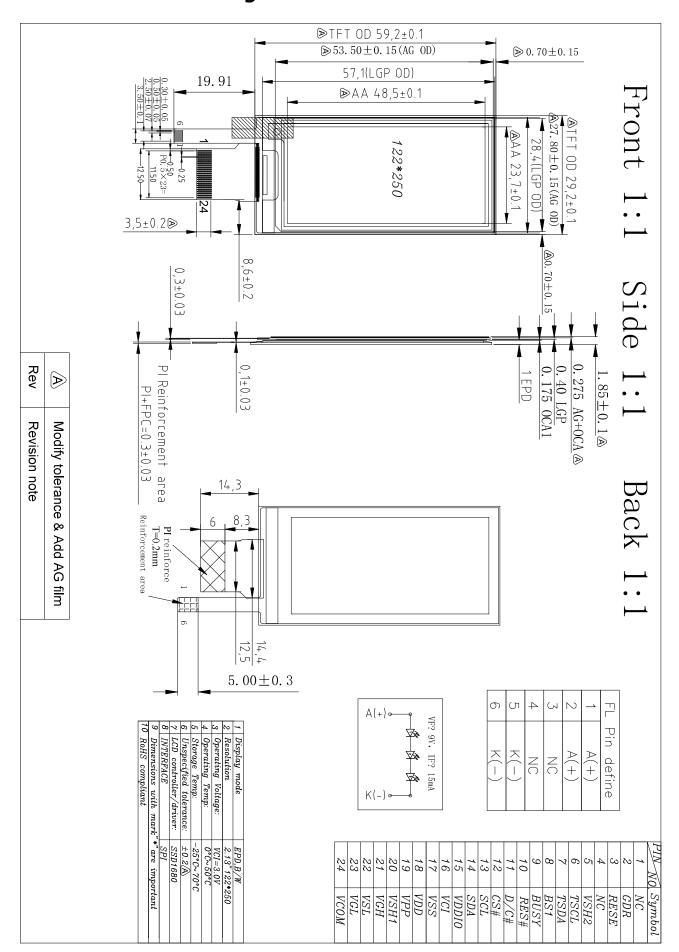
1.	Over View	6
2.	Features	6
3.	Mechanical Specification	6
4.	Mechanical Drawing of EPD Module	7
5.	Input/output Pin Assignment	8
6.	Electrical Characteristics	9
	6.1 Absolute Maximum Rating	9
	6.2 Panel DC Characteristics	10
	6.3 Panel AC Characteristics	11
	6.3.1 MCU Interface Selection	11
	6.3.2 MCU Serial Interface (4-wire SPI)	11
	6.3.3 MCU Serial Interface (3-wire SPI)	12
	6.3.4 Interface Timing	13
7.	Command Table	14
8.	Optical Specification	25
9.	Handling, Safety, and Environment Requirements	26
10.	Reliability Test	27

11.	Block Diagram	28
12.	Reference Circuit	29
13.	Matched Development Kit	30
14.	Typical Operating Sequence	31
	14.1 Normal Operation Flow	31
15.	Inspection condition	32
	15.1 Environment	32
	15.2 Illuminance	32
	15.3 Inspect method	32
	15.4 Display area	32
	15.5 Inspection standard	33
	15.5.1 Electric inspection standard	33
	15.5.2 Appearance inspection standard	34
16.	Packaging	36
17.	Precautions	37

1. Over View

WAA0213A2AAA6NXXX000 is an Active Matrix Electrophoretic Display (AM EPD), with front light panel. The display is capable to display images at 1-bit white, black full display capabilities. The2.13inch active area contains 250×122 pixels. The module is a TFT-array driving electrophoresis display, with integrated circuits including gate driver, source driver, MCU interface, timing controller, oscillator, DC-DC, SRAM, LUT, VCOM. Module can be used in portable electronic devices, such as Electronic Shelf Label (ESL) System.

2.Features


- 250×122 pixels display
- High contrast High reflectance
- Ultra wide viewing angle Ultra low power consumption
- Pure reflective mode
- Bi-stable display
- Commercial temperature range
- Landscape portrait modes
- Hard-coat antiglare display surface
- Ultra Low current deep sleep mode
- On chip display RAM
- Waveform can stored in On-chip OTP or written by MCU
- Serial peripheral interface available
- On-chip oscillator
- On-chip booster and regulator control for generating VCOM, Gate and Source driving voltage
- I2C signal master interface to read external temperature sensor
- Built-in temperature sensor
- With front light panel, 3 LEDs in serial
- Opearting voltage for front light panel: 9V

3. Mechanical Specifications

Parameter	Specifications	Unit	Remark
Screen Size	2.13	Inch	
Display Resolution	122(H)×250(V)	Pixel	Dpi:130
Active Area	23.7×48.5	mm	
Pixel Pitch	0.1943×0.1942	mm	
Pixel Configuration	Square		
Outline Dimension	29.2(H)×59.2 (V) ×1.85(D)	mm	
Weight	4.75±0.5	g	

4. Mechanical Drawing of EPD module

5. Input /Output Pin Assignment

No.	Name	I/O	Description	Remark		
1	NC		Do not connect with other NC pins	Keep Open		
2	GDR	О	N-Channel MOSFET Gate Drive Control			
3	RESE	I	Current Sense Input for the Control Loop			
4	NC	NC	Do not connect with other NC pins	Keep Open		
5	VSH2	С	Positive Source driving voltage(Red)			
6	TSCL	О	I ² C Interface to digital temperature sensor Clock pin			
7	TSDA	I/O	I ² C Interface to digital temperature sensor Data pin			
8	BS1	I	Bus Interface selection pin	Note 5-5		
9	BUSY	О	Busy state output pin	Note 5-4		
10	RES#	I	Reset signal input. Active Low.	Note 5-3		
11	D/C#	I	Data /Command control pin	Note 5-2		
12	CS#	I	Chip select input pin	Note 5-1		
13	SCL	I	Serial Clock pin (SPI)			
14	SDA	I/O	Serial Data pin (SPI)			
15	VDDIO	P	Power Supply for interface logic pins It should be connected with VCI			
16	VCI	P	Power Supply for the chip			
17	VSS	P	Ground			
18	VDD	С	Core logic power pin VDD can be regulated internally from VCI. A capacitor should be connected between VDD and VSS			
19	VPP	P	FOR TEST			
20	VSH1	С	Positive Source driving voltage			
21	VGH	С	Power Supply pin for Positive Gate driving voltage and VSH1			
22	VSL	C	Negative Source driving voltage			
23	VGL	C	Power Supply pin for Negative Gate driving voltage VCOM and VSL			
24	VCOM	C	VCOM driving voltage			

I = Input Pin, O = Output Pin, I/O = Bi-directional Pin (Input/output), P = Power Pin, C = Capacitor Pin

Note 5-1: This pin (CS#) is the chip select input connecting to the MCU. The chip is enabled for MCU communication only when CS# is pulled LOW.

Note 5-2: This pin is (D/C#) Data/Command control pin connecting to the MCU in 4-wire SPI mode. When the pin is pulled HIGH, the data at SDA will be interpreted as data. When the pin is pulled LOW, the data at SDA will be interpreted as command.

Note 5-3: This pin (RES#) is reset signal input. The Reset is active low.

Note 5-4: This pin is Busy state output pin. When Busy is High, the operation of chip should not be interrupted, command should not be sent. The chip would put Busy pin High when –Outputting display waveform -Communicating with digital temperature sensor

Note 5-5: Bus interface selection pin

BS1 State	SS1 State MCU Interface					
L	4-lines serial peripheral interface(SPI) - 8 bits SPI					
Н	3- lines serial peripheral interface(SPI) - 9 bits SPI					

6. Electrical Characteristics

6.1 Absolute Maximum Rating

Parameter	Symbol	Rating	Unit
Logic supply voltage	VCI	-0.5 to +4.0	V
Logic Input voltage	VIN	-0.5 to VCI +0.5	V
Logic Output voltage	VOUT	-0.5 to VCI +0.5	V
Operating Temp range	TOPR	0 to +50	° C
Storage Temp range	TSTG	-25 to+70	° C
Optimal Storage Humidity	HSTGo	55±10	%RH

Note:

Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Panel DC Characteristics tables.

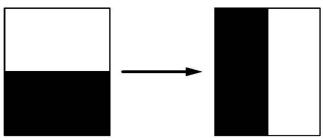
6.2 Panel DC Characteristics

The following specifications apply for: VSS=0V, VCI=3.0V, TOPR =25°C.

WINSTAR Display 9/37 2.13 inch Series

Parameter	Symbol	Conditions	Applica ble pin	Min.	Тур.	Max	Units
Single ground	V _{ss}	-		-	0		V
Logic supply voltage	Vcı	2	VCI	2.2	3.0	3.7	V
Core logic voltage	V_{DD}		VDD	1.7	1.8	1.9	V
High level input voltage	V _{IH}	-	-	0.8 Vc1	-	-	V
Low level input voltage	V _{IL}	2		ē	5	0.2 Va	V
High level output voltage	Von	IOH = - 100uA		0.9 VCI		-	V
Low level output voltage	Vol	IOL = 100uA		-	-	0.1 V _{CI}	V
Typical power	P _{TYP}	Va=3.0V	84	2	10.5	9	mW
Deep sleep mode	P _{STPY}	V _{CI} =3.0 V		-	0.003	-	mW
Typical operating current	Iopr_V _{CI}	Va=3.0V	18	*	3.5		mA
Full update time	820	25 °C) (4	2	3	9	sec
Fast update time	-	25 °C	12	9	1.5	e e	sec
Partial update time		25 °C	:=		0.42	-	sec
Sleep mode current	Islp_Va	DC/ DC off No clock No input load Ram data retain	標	Ē.	20		uA
Deep sleep mode current	Idslp_Va	DC/ DC off No clock No input load Ram data not retain	84	2	1	5	uA

Notes:


- 1) Refresh time: the time it takes for the whole process from the screen change to the screen stabilization.
- 2) The difference between different refresh methods:

Full refresh: The screen will flicker several times during the refresh process;

Fast Refresh: The screen will flash once during the refresh process; Partial refresh: The screen does not flicker during the refresh process.

During the fast refresh or partial refresh of the electronic paper, it is recommended to add a full-screen refresh after 5 consecutive operations to reduce the accumulation of afterimages on the screen.

- 1. The typical power is measured with following transition from horizontal 2 scale pattern to vertical 2 scale pattern.
- 2. The deep sleep power is the consumed power when the panel controller is in deep sleep mode.
- 3. The listed electrical/optical characteristics are only guaranteed under the controller & waveform provided by WINSTAR display.

6.3 Panel AC Characteristics 6.3.1 MCU Interface Selection

The pin assignment at different interface mode is summarized in Table 6-4-1. Different MCU mode can be set by hardware selection on BS1 pins. The display panel only supports 4-wire SPI or 3-wire SPI interface mode.

Pin Name	Data/Command Interface Control Signal			1	
Bus interface	SDA	SCL	CS#	D/C#	RES#
BS1=L 4-wire SPI	SDA	SCL	CS#	D/C#	RES#
BS1=H 3-wire SPI	SDA	SCL	CS#	L	RES#

6.3.2 MCU Serial Interface (4-wire SPI)

The serial interface consists of serial clock SCL, serial data SDA, D/C#, CS#. This interface supports Write mode and Read mode.

Function	CS#	D/C#	SCL
Write command	L	L	†
Write data	L	Н	†

Note: ↑ stands for rising edge of signal

In the write mode SDA is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0. The level of D/C# should be kept over the whole byte. The data byte in the shift register is written to the Graphic Display Data RAM /Data Byte register or command Byte register according to D/C# pin.

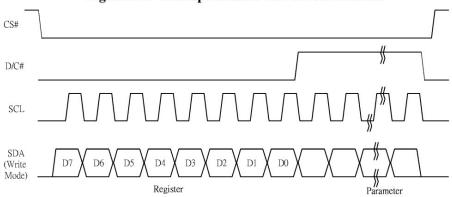


Figure 6-1: Write procedure in 4-wire SPI mode

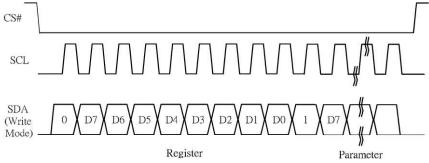
In the Read mode:

- 1. After driving CS# to low, MCU need to define the register to be read.
- 2. SDA is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0 with D/C# keep low.
- 3. After SCL change to low for the last bit of register, D/C# need to drive to high.
- 4. SDA is shifted out an 8-bit data on every falling edge of SCL in the order of D7, D6, ... D0.
- 5. Depending on register type, more than 1 byte can be read out. After all byte are read, CS# need to drive to high to stop the read operation.

WINSTAR Display 11/37 2.13 inch Series

Figure 6-2: Read procedure in 4-wire SPI mode

6.3.3 MCU Serial Interface (3-wire SPI)

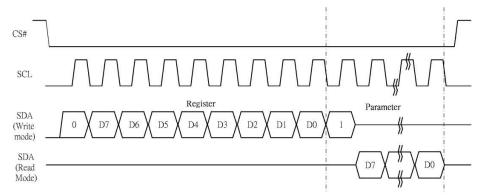

The 3-wire serial interface consists of serial clock SCL, serial data SDA and CS#. This interface also supports Write mode and Read mode.

The operation is similar to 4-wire serial interface while D/C# pin is not used. There are altogether 9-bits will be shifted into the shift register on every ninth clock in sequence: D/C# bit, D7 to D0 bit. The D/C# bit (first bit of the sequential data) will determine the following data byte in the shift register is written to the Display Data RAM (D/C# bit = 1) or the command register (D/C# bit = 0).

Function	CS#	D/C#	SCL
Write command	L	Tie	†
Write data	L	Tie	†

Note: ↑ stands for rising edge of signal

Figure 6-3: Write procedure in 3-wire SPI mode



In the Read mode:

- 1. After driving CS# to low, MCU need to define the register to be read.
- 2. D/C=0 is shifted thru SDA with one rising edge of SCL
- 3. SDA is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0.
- 4. D/C=1 is shifted thru SDA with one rising edge of SCL
- 5. SDA is shifted out an 8-bit data on every falling edge of SCL in the order of D7, D6, ... D0.
- 6. Depending on register type, more than 1 byte can be read out. After all byte are read, CS# need to drive to high to stop the read operation.

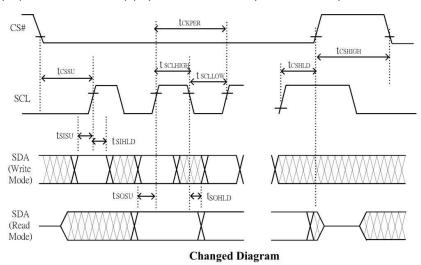

WINSTAR Display 12/37 2.13 inch Series

Figure 6-4: Read procedure in 3-wire SPI mode

6.3.4 Interface Timing

The following specifications apply for: VSS=0V, VCI=3.0V, TOPR =25°C.

Serial Interface Timing Characteristics

 $(VCI - VSS = 2.2V \text{ to } 3.7V, TOPR = 25^{\circ}C, CL=20pF)$

Write mode

Symbol	Parameter	Min	Тур	Max	Unit
f _{SCL}	SCL frequency (Write Mode)			20	MHz
tcssu	Time CS# has to be low before the first rising edge of SCLK	60			ns
tcshld	Time CS# has to remain low after the last falling edge of SCLK	65			ns
tcshigh	Time CS# has to remain high between two transfers	100			ns
t _{sclHigh}	Part of the clock period where SCL has to remain high	25			ns
tscllow	Part of the clock period where SCL has to remain low	25			ns
t _{sisu}	Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL	10			ns
tsiHLD	Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL	40			ns

Read mode

Symbol	Parameter	Min	Тур	Max	Unit
f _{SCL}	SCL frequency (Read Mode)			2.5	MHz
tcssu	Time CS# has to be low before the first rising edge of SCLK	100			ns
tcshld	Time CS# has to remain low after the last falling edge of SCLK	50			ns
tcsнigh	Time CS# has to remain high between two transfers	250			ns
tschiigh	Part of the clock period where SCL has to remain high	180			ns
tscllow	Part of the clock period where SCL has to remain low	180			ns
tsosu	Time SO(SDA Read Mode) will be stable before the next rising edge of SCL		50		ns
tsoHLD	Time SO (SDA Read Mode) will remain stable after the falling edge of SCL		0		ns

7. Command Table

		d Tal				1000000			-		I	1	(C. 1956)		
	D/C#			D6	D5	D4	D3	D2	D1	D0	Command	Descripti			
0	0	01	0	0	0	0	0	0	0	1	Driver Output control	Gate setti			
0	1		A ₇	A ₆	A_5	A ₄	A ₃	A ₂	A ₁	A ₀], 296 MU	
0	1		0	0	0	0	0	0	0	A ₈		MUX Gate	e lines se	tting as (A	[8:0] + 1).
0	1		0	0	0	0	0	B ₂	B ₁	Bo	-	B[2:0] = 0	00 [POR]	5	
				5.089					545711					uence and	direction
												output sec GD=1, G1 is the output sec B[1]: SM Change s SM=0 [PC G0, G1, G interlaced SM=1, G0, G2, G B[0]: TB TB = 0 [PC	OR], 1st gate of quence is 1st gate of quence is canning of DR], 62, G32 OR], OR], scar	out Gate output chan G0,G1, G output chan G1, G0, G order of ga e95 (left an	2, G3, nnel, gate 33, G2, te driver. d right ga ,G295
^	0	02	0	0	0	0	0	0	4	1	Cota Driving voltage	Cat Cata	drivina va	ltaga	
0	0	03	0	0	0	0	11000	0	1	1	Gate Driving voltage Control	Set Gate A[4:0] = 0	Oh [POR]	ilage	
U	1		0	U	U	A ₄	A ₃	A ₂	A ₁	A ₀	Control			0V to 20V	
												A[4:0]	VGH	A[4:0]	VGH
		1									I				The second second
												00h	20	0Dh	15
												00h 03h	10	0Dh 0Eh	
													10000	71000 Wall 2 To	15
												03h	10	0Eh	15 15.5
												03h 04h 05h	10 10.5 11	0Eh 0Fh 10h	15 15.5 16 16.5
												03h 04h 05h 06h	10 10.5 11 11.5	0Eh 0Fh 10h 11h	15 15.5 16 16.5 17
												03h 04h 05h 06h 07h	10 10.5 11 11.5 12	0Eh 0Fh 10h 11h 12h	15 15.5 16 16.5 17 17.5
												03h 04h 05h 06h 07h 08h	10 10.5 11 11.5 12 12.5	0Eh 0Fh 10h 11h 12h 13h	15 15.5 16 16.5 17 17.5 18
												03h 04h 05h 06h 07h 08h 07h	10 10.5 11 11.5 12 12.5 12	0Eh 0Fh 10h 11h 12h 13h 14h	15 15.5 16 16.5 17 17.5 18 18.5
												03h 04h 05h 06h 07h 08h 07h	10 10.5 11 11.5 12 12.5 12 12.5	0Eh 0Fh 10h 11h 12h 13h 14h	15 15.5 16 16.5 17 17.5 18 18.5
												03h 04h 05h 06h 07h 08h 07h 08h 09h	10 10.5 11 11.5 12 12.5 12 12.5 13	0Eh 0Fh 10h 11h 12h 13h 14h 15h	15 15.5 16 16.5 17 17.5 18 18.5 19
												03h 04h 05h 06h 07h 08h 07h 08h 09h	10 10.5 11 11.5 12 12.5 12 12.5 13 13.5	0Eh 0Fh 10h 11h 12h 13h 14h 15h 16h 17h	15 15.5 16 16.5 17 17.5 18 18.5 19 19.5 20
												03h 04h 05h 06h 07h 08h 07h 08h 09h	10 10.5 11 11.5 12 12.5 12 12.5 13	0Eh 0Fh 10h 11h 12h 13h 14h 15h	15 15.5 16 16.5 17 17.5 18 18.5 19

Com	ommand Table													
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description		
0	0	04	0	0	0	0	0	1	0	0	Source Driving voltage	Set Source driving voltage		
0	1		A ₇	A ₆	A ₅	A ₄	Аз	A ₂	A ₁	A ₀	Control	A[7:0] = 41h [POR], VSH1 at 15V		
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B₁	Bo		B[7:0] = A8h [POR], VSH2 at 5V. C[7:0] = 32h [POR], VSL at -15V		
0	1		C ₇	C ₆	C ₅	C ₄	Сз	C ₂	Cı	Co		Remark: VSH1>=VSH2		
Λ[7]	A[7]/D[7] = 1 $A[7]/D[7] = 0$ $C[7] = 0$													

A[7]/B[7] = 1, VSH1/VSH2 voltage setting from 2.4V to 8.8V

A/B[7:0]	VSH1/VSH2	A/B[7:0]	VSH1/VSH2		
8Eh	2.4	AFh	5.7		
8Fh	2.5	B0h	5.8		
90h	2.6	B1h	5.9		
91h	2.7	B2h	6		
92h	2.8	B3h	6.1		
93h	2.9	B4h	6.2		
94h	3	B5h	6.3		
95h	3.1	B6h	6.4		
96h	3.2	B7h	6.5		
97h	3.3	B8h	6.6		
98h	3.4	B9h	6.7		
99h	3.5	BAh	6.8		
9Ah	3.6	BBh	6.9		
9Bh	3.7	BCh	7		
9Ch	3.8	BDh	7.1		
9Dh	3.9	BEh	7.2		
9Eh	4	BFh	7.3		
9Fh	4.1	C0h	7.4		
A0h	4.2	C1h	7.5		
A1h	4.3	C2h	7.6		
A2h	4.4	C3h	7.7		
A3h	4.5	C4h	7.8		
A4h	4.6	C5h	7.9		
A5h	4.7	C6h	8		
A6h	4.8	C7h	8.1		
A7h	4.9	C8h	8.2		
A8h	5	C9h	8.3		
A9h	5.1	CAh	8.4		
AAh	5.2	CBh	8.5		
ABh	5,3	CCh	8.6		
ACh	5.4	CDh	8.7		
ADh	5.5	CEh	8.8		
AEh	5.6	Other	NA		

A[7]/B[7] = 0, VSH1/VSH2 voltage setting from 9V to 17V

A/B[7:0]	VSH1/VSH2	A/B[7:0]	VSH1/VSH2
23h	9	3Ch	14
24h	9.2	3Dh	14.2
25h	9,4	3Eh	14.4
26h	9.6	3Fh	14_6
27h	9.8	40h	14.8
28h	10	41h	15
29h	10,2	42h	15.2
2Ah	10.4	43h	15.4
2Bh	10,6	44h	15.6
2Ch	10.8	45h	15.8
2Dh	11	46h	16
2Eh	11.2	47h	16.2
2Fh	11.4	48h	16.4
30h	11.6	49h	16.6
31h	11.8	4Ah	16.8
32h	12	4Bh	17
33 h	12.2	Other	NA
34h	12.4		
35h	12,6		
36h	12.8		
37h	13		
38h	13.2		
39h	13,4		
3Ah	13.6		
3Bh	13.8		

C[7] = 0, VSL setting from -5V to -17V

C[7:0]	VSL
0Ah	-5
0Ch	-5.5
0Eh	-6
10h	-6.5
12h	-7
14h	-7.5
16h	-8
18h	-8.5
1Ah	-9
1Ch	-9.5
1Eh	-10
20h	-10.5
22h	-11
24h	-11.5
26h	12
28h	-12,5
2Ah	-13
2Ch	-13.5
2Eh	-14
30h	-14.5
32h	-15
34h	-15.5
36h	-16
38h	-16.5
3Ah	-17
Other	NA

0	0	80	0	0	0	0	1	0	0		Initial Code Setting OTP Program	Program Initial Code Setting The command required CLKEN=1.
												Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	09	0	0	0	0	1	0	0			Write Register for Initial Code Setting
0	1		A ₇	A ₆	A ₅	A ₄	Аз	A ₂	A ₁	Ao	Code Setting	Selection
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B₁	Bo		A[7:0] ~ D[7:0]: Reserved Details refer to Application Notes of Initial
0	1		C ₇	C ₆	C ₅	C ₄	Сз	C ₂	C ₁	Co		Code Setting
0	1		D ₇	D ₆	D ₅	D ₄	Dз	D ₂	Dı	D₀		
0	0	0A	0	0	0	0	1	0	1		Read Register for Initial Code Setting	Read Register for Initial Code Setting

om		-	CONTRACTOR AND ADDRESS OF THE PARTY OF THE P	40,000	2.24	25,334.6	100	110.00	1	150 580	1.				
Mischille	D/C#	1000000	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description			
0	0	0C	0	0	0	0	1	1	0	0	Booster Soft start	Booster Enable with Phase 1, Phase 2 and Phas for soft start current and duration setting.			
0	1		1	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	Control				
0	1		1	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	B ₀		A[7:0] -> Soft start setting for Phase1 = 8Bh [POR]			
0	1		1	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀		B[7:0] -> Soft start setting for Phase2 = 9Ch [POR]			
0	1		0	0	D ₅	D ₄	Dз	D ₂	D ₁	D ₀		= 9Ch [POR] C[7:0] -> Soft start setting for Phase3			
												= 96h [POR]			
												D[7:0] -> Duration setting = 0Fh [POR]			
												Bit Description of each byte: A[6:0] / B[6:0] / C[6:0]:			
												Driving Strength			
												Selection 000 1(Weakest)			
												000 ((weakest))			
												010 3			
												011 4			
												100 5			
												101 6			
												110 7			
												111 8(Strongest)			
												Bit[3:0] Min Off Time Setting of GDR [Time unit]			
												0000			
												0011 NA			
												0100 2.6			
												0101 3.2			
												0110 3.9			
												0111 4.6			
												1000 5.4			
												1001 6.3			
												1010 7.3			
												1011 8.4			
												1100 9.8			
												1101 11.5			
												1110 13.8			
												1111 16.5			
												D[5:0]: duration setting of phase D[5:4]: duration setting of phase 3 D[3:2]: duration setting of phase 2 D[1:0]: duration setting of phase 1 Bit[1:0]			
												11 40ms			
					<u> </u>					1		5. 1 90557 15.70590040000			
0	0	10	0	0	0	1	0		0	-	eep Sleep mode	Deep Sleep mode Control:			
0	1		0	0	0	0	0	0	A ₁	Ao		A[1:0]: Description 00 Normal Mode [POR]			
												00 Normal Mode [POR] 01 Enter Deep Sleep Mode 1			
												1900 Verter Frederick Control			
												11 Enter Deep Sleep Mode 2			
												After this command initiated, the chip wi enter Deep Sleep Mode, BUSY pad will keep output high. Remark: To Exit Deep Sleep mode, User required			
			- 1									to send HWRESET to the driver			

A [1:0] = ID[1:0] Address automatic increment / decrement setting The setting of incrementing or or decrementing or the address counter can be made independently in each upper and lower bit of the address. 00 - Y decrement, X increment, 01 - Y decrement, X increment, 10 - Y increment, X decrement, 11 - Y increment, 12 - Y increment, 13 - Y increment, 14 - Y increment, 16 - Y increment, 17 - Y increment, 18 - Y increment, 19 - Y increment, 10 - Y in	0	0	11	0	0	0	1	0	0	0	1	Data Entry mode setting	Define data entry sequence
Address automatic increment / decrement setting The setting of incrementing or decrementing of the address counter can be made independently in each upper and lower bit of the address out of the address counter is updated automatically after data are written to the RAM. AMF 0, the address counter is updated in the X direction. [POR] AMF 1, the address counter is updated in the X direction. [POR] AMF 1, the address counter is updated in the X direction. [POR] AMF 1, the address counter is updated in the X direction. [POR] AMF 1, the address counter is updated in the X direction. [POR] AMF 1, the address counter is updated in the X direction. [POR] AMF 1, the address counter is updated in the X direction. [POR] AMF 1, the address counter is updated in the X direction. [POR] AMF 1, the address counter is updated in the X direction. It resets the commands and parameters to their S/W Reset default values except R10h-Deep Sleep Mode During operation, BUSY pad will output high. Note: RAM are unaffected by this command required CLKEN=1 and ANALOGEN=1. Refer to Register 0x22 for detail. After this command intilated, HV Ready detection advanced to the Slatus Bit Read (Command 0x2F). A[6:4]=n for cool down duration: 10ms x (n+1) x (m) HV ready detection will be completed when HV is ready. For 1 short HV ready detection will be completed when HV is ready. For 1 short HV ready detection, A[7:0] can	0	1		0	0	0	0	0	A ₂	A ₁	Ao		A[2:0] = 011 [POR]
their S/W Reset default values except R10h-Deep Sleep Mode During operation, BUSY pad will output high. Note: RAM are unaffected by this command. HV ready detection A[7:0] = 00h [POR] The command required CLKEN=1 and ANALOGEN=1. Refer to Register 0x22 for detail. After this command initiated, HV Ready detection. The detection result can be read from the Status Bit Read (Command 0x2F). A[6:4]=n for cool down duration: 10ms x (n+1) x (m) HV ready detection will be trigger after each cool down time. The detection will be completed when HV is ready. For 1 shot HV ready detection, A[7:0] can													Address automatic increment / decrement setting The setting of incrementing or decrementing of the address counter can be made independently in each upper and lower bit of the address. 00 —Y decrement, X decrement, 01 —Y decrement, X increment, 10 —Y increment, X decrement, 11 —Y increment, X increment [POR] A[2] = AM Set the direction in which the address counter is updated automatically after data are written to the RAM. AM= 0, the address counter is updated in the X direction. [POR] AM = 1, the address counter is updated in
R10h-Deep Sleep Mode During operation, BUSY pad will output high. Note: RAM are unaffected by this command. Note: RAM are unaffected by this command. HV ready detection A[7:0] = 00h [POR] The command required CLKEN=1 and ANALOGEN=1. Refer to Register 0x22 for detail. After this command initiated, HV Ready detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F). A[6:4]=n for cool down duration: 10ms x (n+1) A[2:0]=m for number of Cool Down Loop to detect. The max HV ready duration is 10ms x (n+1) x (m) HV ready detection will be trigger after each cool down time. The detection will be completed when HV is ready. For 1 shot HV ready detection, A[7:0] can	0	0	12	0	0	0	1	0	0	1	0	SW RESET	
high. Note: RAM are unaffected by this command. Note: RAM are unaffected by this command. HV ready detection A[7:0] = 00h [POR] The command required CLKEN=1 and ANALOGEN=1. Refer to Register 0x22 for detail. After this command initiated, HV Ready detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F). A[6:4]=n for cool down duration: 10ms x (n+1) A[2:0]=m for number of Cool Down Loop to detect. The max HV ready duration is 10ms x (n+1) x (m) HV ready detection will be trigger after each cool down time. The detection will be completed when HV is ready. For 1 shot HV ready detection, A[7:0] can													R10h-Deep Sleep Mode
command. Command Comm													
A[7:0] = 00h [POR] The command required CLKEN=1 and ANALOGEN=1. Refer to Register 0x22 for detail. After this command initiated, HV Ready detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F). A[6:4]=n for cool down duration: 10ms x (n+1) A[2:0]=m for number of Cool Down Loop to detect. The max HV ready duration is 10ms x (n+1) x (m) HV ready detection will be trigger after each cool down time. The detection will be completed when HV is ready. For 1 shot HV ready detection, A[7:0] can													
ANALOGEN=1. Refer to Register 0x22 for detail. After this command initiated, HV Ready detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F). A[6:4]=n for cool down duration: 10ms x (n+1) A[2:0]=m for number of Cool Down Loop to detect. The max HV ready duration is 10ms x (n+1) x (m) HV ready detection will be trigger after each cool down time. The detection will be completed when HV is ready. For 1 shot HV ready detection, A[7:0] can	0	0	14	0	0	0	1	0	1	0	0	HV Ready Detection	A[7:0] = 00h [POR]
After this command initiated, HV Ready detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F). A[6:4]=n for cool down duration: 10ms x (n+1) A[2:0]=m for number of Cool Down Loop to detect. The max HV ready duration is 10ms x (n+1) x (m) HV ready detection will be trigger after each cool down time. The detection will be completed when HV is ready. For 1 shot HV ready detection, A[7:0] can													ANALOGEN=1.
detection. The detection result can be read from the Status Bit Read (Command 0x2F). A[6:4]=n for cool down duration: 10ms x (n+1) A[2:0]=m for number of Cool Down Loop to detect. The max HV ready duration is 10ms x (n+1) x (m) HV ready detection will be trigger after each cool down time. The detection will be completed when HV is ready. For 1 shot HV ready detection, A[7:0] can													After this command initiated, HV Ready
The detection result can be read from the Status Bit Read (Command 0x2F). A[6:4]=n for cool down duration: 10ms x (n+1) A[2:0]=m for number of Cool Down Loop to detect. The max HV ready duration is 10ms x (n+1) x (m) HV ready detection will be trigger after each cool down time. The detection will be completed when HV is ready. For 1 shot HV ready detection, A[7:0] can													
10ms x (n+1) A[2:0]=m for number of Cool Down Loop to detect. The max HV ready duration is 10ms x (n+1) x (m) HV ready detection will be trigger after each cool down time. The detection will be completed when HV is ready. For 1 shot HV ready detection, A[7:0] can													The detection result can be read from the
The max HV ready duration is 10ms x (n+1) x (m) HV ready detection will be trigger after each cool down time. The detection will be completed when HV is ready. For 1 shot HV ready detection, A[7:0] can	0	1		0	A ₆	A ₅	A ₄	0	A ₂	A ₁	Ao		A[6:4]=n for cool down duration: 10ms x (n+1) A[2:0]=m for number of Cool Down Loop
HV ready detection will be trigger after each cool down time. The detection will be completed when HV is ready. For 1 shot HV ready detection, A[7:0] can													The max HV ready duration is
For 1 shot HV ready detection, A[7:0] can													HV ready detection will be trigger after each cool down time. The detection will be

0	0	15	0	0	0	1	0	1	0	1	VCI Detection	VCI Detection
0	1	10	0	0	0	0	0	A ₂	A ₁	Ao	VOI Belection	A[2:0] = 100 [POR], Detect level at 2.3V
	·											A[2:0] : VCI level Detect
												A[2:0] VCI level
												011 2.2V
												100 2.3V 101 2.4V
												110 2.5V 111 2.6V
												Other NA
												The command required CLKEN=1 and ANALOGEN=1
												Refer to Register 0x22 for detail.
												After this command initiated, VCI
												detection starts.
												BUSY pad will output high during
												detection.
												The detection result can be read from the Status Bit Read (Command 0x2F).
												Takas Bit rioda (communa unci).
0	0	18	0	0	0	1	1	0	0	0	Temperature Sensor Control	Temperature Sensor Selection A[7:0] = 48h [POR], external temperatrure
0	1		A ₇	A ₆	A_5	A ₄	Аз	A ₂	A ₁	A ₀	Control	sensor
												A[7:0] = 80h Internal temperature sensor
0	0	1A	0	0	0	1	1	0	1	0	Temperature Sensor	Write to temperature register.
0	1	IA	A ₁₁	A ₁₀	A ₉	A ₈	A ₇	A ₆	A ₅	A ₄	Control (Write to	A[11:0] = 7FFh [POR]
0	1		Аз	A ₂	A ₁	Ao	0	0	0	0	temperature register)	
			, 10	, 12	6 M	10						1
0	0	1B	0	0	0	1	1	0	1	1	Temperature Sensor	Read from temperature register.
1	1		A ₁₁	A ₁₀	A 9	A ₈	A ₇	A ₆	A ₅	A ₄	Control (Read from temperature register)	
1	1		Аз	A ₂	A ₁	A ₀	0	0	0	0	temperature register)	
0	0	1C	0	0	0	1	1	1	0	0	Temperature Sensor	Write Command to External temperature
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Control (Write Command	sensor. A[7:0] = 00h [POR],
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	B ₀	to External temperature sensor)	B[7:0] = 00h [POR],
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co	555.,	C[7:0] = 00h [POR],
												A[7:6]
												A[7:6] Select no of byte to be sent
												00 Address + pointer 01 Address + pointer + 1st parameter
												Address + pointer + 1st parameter +
												2nd pointer 11 Address
												A[5:0] – Pointer Setting
												B[7:0] - 1st parameter
												C[7:0] – 2 nd parameter
												The command required CLKEN=1. Refer to Register 0x22 for detail.
												There to hegister oxez for detail.
												After this command initiated, Write
												Command to external temperature sensor
												starts. BUSY pad will output high during operation.
5820					11 007	351		7000		387		
0	0	20	0	0	1	0	0	0	0	0	Master Activation	Activate Display Update Sequence
												The Display Update Sequence Option is located at R22h.
												BUSY pad will output high during
												operation. User should not interrupt this
												operation to avoid corruption of panel images.

0	0	21	0	0	1	0	0	0	0	1	Display Update Control	RAM content option for Display	Update
0	1		A ₇	A ₆	A ₅	A ₄	Аз	A ₂	A ₁	A ₀	1	A[7:0] = 00h [POR] B[7:0] = 00h [POR]	
0	1		B ₇	0	0	0	0	0	0	0		A[7:4] Red RAM option 0000	atent as 0 atent of to S175
0	0	22	0 A ₇	0 A ₆	1 A ₅	0 A ₄	0 A ₃	0 A ₂	1 A ₁	0 A ₀	Display Update Control 2	Display Update Sequence Optic Enable the stage for Master Ac A[7:0]= FFh (POR)	tivation
												Operating sequence	Parameter (in Hex)
												Enable clock signal Disable clock signal	80 01
												Enable clock signal → Enable Analog	CO
												Disable Analog → Disable clock signal	03
												Enable clock signal → Load LUT with DISPLAY Mode 1 → Disable clock signal	91
												Enable clock signal → Load LUT with DISPLAY Mode 2 → Disable clock signal	99
												Enable clock signal → Load temperature value → Load LUT with DISPLAY Mode 1 → Disable clock signal	B1
												Enable clock signal → Load temperature value → Load LUT with DISPLAY Mode 2 → Disable clock signal	В9
												Enable clock signal → Enable Analog → Display with DISPLAY Mode 1 → Disable Analog → Disable OSC	C7
												Enable clock signal → Enable Analog → Display with DISPLAY Mode 2 → Disable Analog → Disable OSC	CF
												Enable clock signal → Enable Analog → Load temperature value → DISPLAY with DISPLAY Mode 1 → Disable Analog → Disable OSC	F7
												Enable clock signal → Enable Analog → Load temperature value → DISPLAY with DISPLAY Mode 2 → Disable Analog → Disable OSC	FF
0	0	24	0	0	1	0	0	1	0	0	Write RAM (Black White) / RAM 0x24	written into the BW RAM until a command is written. Address p advance accordingly	nother
												For Write pixel: Content of Write RAM(BW) = For Black pixel: Content of Write RAM(BW) =	

	man									,		
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	26	0	0	1	0	0	1	1	0	Write RAM (RED) / RAM 0x26	After this command, data entries will be written into the RED RAM until another command is written. Address pointers will advance accordingly.
												For Red pixel: Content of Write RAM(RED) = 1 For non-Red pixel [Black or White]: Content of Write RAM(RED) = 0
0	0	27	0	0	1	0	0	1	1	1	Read RAM	After this command, data read on the MCU bus will fetch data from RAM. According to parameter of Register 41h to select reading RAM0x24/ RAM0x26, until another command is written. Address pointers will advance accordingly. The 1st byte of data read is dummy data.
0	0	28	0	0	1	0	1	0	0	0	VCOM Sense	Enter VCOM sensing conditions and hold for duration defined in 29h before reading VCOM value. The sensed VCOM voltage is stored in register The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail.
												BUSY pad will output high during operation.
0	0	29	0	0	1	0	1	0	0	1	VCOM Sense Duration	Stabling time between entering VCOM
0	1	29	0	1	0	0	A ₃	A ₂	A ₁	Ao	VCOM Serise Duration	sensing mode and reading acquired.
												A[3:0] = 9h, duration = 10s. VCOM sense duration = (A[3:0]+1) sec
0	0	2A	0	0	1	0	1	0	1	0	Program VCOM OTP	Program VCOM register into OTP
	8	5.00	1,000	538	81	000	Mar .		2000	5500		The command required CLKEN=1. Refer to Register 0x22 for detail.
												BUSY pad will output high during operation.
0	0	2B	0	0	1	0	1	0	1	1	Write Register for VCOM	This command is used to reduce glitch
0	1		0	0	0	0	0	1	0	0	Control	when ACVCOM toggle. Two data bytes
0	1		0	1	1	0	0	0	1	1	-	D04h and D63h should be set for this command.

WINSTAR Display 20/37 2.13 inch Series

Com	man	d Ta	ble		200							~				
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Descrip	tion			
0	0	2C	0	0	1	0	1	1	0	0	Write VCOM register				ICU interface	
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	Control and the control and th	A[7:0] =	00h [POR]			
												A[7:0]	VCOM	A[7:0]	VCOM	
												08h	-0.2	44h	-1.7	
												0Ch	-0.3	48h	-1.8	
												10h	-0.4	4Ch	-1.9	
												14h	-0.5	50h	-2	
												18h	-0.6	54h	-2.1	
												1Ch	-0.7	58h	-2.2	
												20h 24h	-0.8 -0.9	5Ch 60h	-2.3	
												28h	-0.9	64h	-2.4 -2.5	
												2Ch	-1.1	68h	-2.6	
												30h	-1.2	6Ch	-2.7	
												34h	-1.3	70h	-2.8	
												38h	-1.4	74h	-2.9	
												3Ch	-1.5	78h	-3	
												40h	-1.6	Other	NA	
												4011	-1.0	Other	INA	
0	0	2D	0	0	1	0	1	1	0	1	OTP Register Read for	Read	Register for	Dienlay (Ontion:	
1	1	20	5552	0.990		2000		1.22	95,911	Ao	Display Option	I Cau P	Cogister IUI	Display (option.	
_			A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁				VCOM OT		on	
1	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	B ₀		(Comm	and 0x37,	Byte A)		
1	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀			MACCOLLUC			
1	1		D ₇	D ₆	D ₅	D ₄	D ₃	D_2	D ₁	Do			VCOM Reg			
1	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	Εo		(Comm	and 0x2C)			
1	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	Fo		C[7:0]~G[7:0]: Display Mode				
1	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	Go		(Command 0x37, Byte B to Byte F) [5 bytes]				
1	1		H ₇	H ₆	H ₅	H ₄	Нз	H ₂	H ₁	Ho						
1	1		17	16	15	14	l ₃	12	l ₁	Io				(12)	. 72	
1	1		J ₇	J ₆	J ₅	J ₄	J ₃	J ₂	J ₁	Jo			K[7:0]: Wa			
1	1	_	K ₇			-	-			K ₀		[4 byte:	and 0x37,	byte G to	b byte J)	
_			N 7	K ₆	K ₅	K ₄	K ₃	K ₂	K ₁	N ₀		[4 byte.	٥]			
0	0	2E	0	0	1	0	1	1	1	0	User ID Read	Poad 10	Byte User	ID store	od in OTD:	
	1		100		-	-	100	_	200	- 10	OSCI ID IXCAU				Byte A and	
1	-		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀			[10 bytes]	(, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
1	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	Bı	Bo						
1	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀						
1	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	Do						
1	1		E ₇	E ₆	E ₅	E ₄	Ез	E ₂	E ₁	Εo						
1	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	Fo						
1	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	Go						
1	1		H ₇	H ₆	H ₅	H ₄	Нз	H ₂	H ₁	H₀						
1	1		Ī ₇	16	15	14	l ₃	l ₂	I ₁	lo	1					
1	1		J ₇	J ₆	J ₅	J ₄	J ₃	J ₂	J ₁	Jo						
		25									Otativa Dit Da!	D10	atatus Diri	DOD 0: 0	141	
0	0	2F	0	0	1	0	1	1	1	1	Status Bit Read		status Bit [on 1] 2] [POR=0]	
1	1		0	0	A ₅	A ₄	0	0	A ₁	A ₀		0: Ready		COUDIT HE	is [i ON-0]	
												1: Not R	eady			
												A[4]: VC	I Detection	flag [PO	R=0]	
												0: Norma	al wer than th	no Dotost	lovol	
												A[3]: [PC		ie Detect	levei	
													sy flag [PO	R=0]		
												0: Norma	al			
												1: BUSY		D-041		
												A[1:0]: C	hip ID [PO	K=01]		
												Remark:				
												A[5] and	A[4] status			
													they need			
												respective	d 0x14 and	comma	nd UX15	
	- 3										1	respectiv	voly.			

0 0 0 1 0 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1	0 1 1 1 1 1	31	0	0	1	1	0	0	0			
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	1 1 1	32	-	- 19						1	Load WS OTP	Load OTP of Waveform Setting The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0 0 0 1 1 1 0 1 0 1 0 1 0 1 0 1			0 A ₇ B ₇ :	0 A ₆ B ₆	1 A ₅ B ₀	1 A ₄ B ₄	0 A ₃ B ₃	0 A ₂ B ₂	1 A ₁ B ₁	0 A ₀ B ₀	Write LUT register	Write LUT register from MCU interface [153 bytes], which contains the content of VS[nX-LUTm], TP[nX], RP[n], SR[nXY], FR[n] and XON[nXY] Refer to Session 6.7 WAVEFORM SETTING
1 1 1 1 1 1 0 0 0 0 0 0 1 0 1 0 1 0 1 0	0	34	0	0	1	1	0	1	0	0	CRC calculation	CRC calculation command For details, please refer to SSD1680 application note. BUSY pad will output high during operation.
0 0 1 0 1 0 1 0 1 0 1 0 1	0 1 1	35	0 A ₁₅	0 A ₁₄ A ₆	1 A ₁₃	1 A ₁₂	0 A ₁₁ A ₃	1 A ₁₀	0 A ₉	1 A ₈	CRC Status Read	CRC Status Read A[15:0] is the CRC read out value
0 1 0 1 0 1 0 1 0 1	0	36	0	0	1	1	0	1	1	0	Program OTP selection	Program OTP Selection according to the OTP Selection Control [R37h and R38h] The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0 1 0 1 0 1 0 1 0 1		1										
0 1 0 1 0 1 0 1 0 1	0	37	0	0	1	1	0	1	1	1	Write Register for Display Option	Write Register for Display Option A[7] Spare VCOM OTP selection
0 1 0 1 0 1 0 1		-	A ₇	0	0	0	0	0	0	0		0: Default [POR]
0 1 0 1 0 1	- 17	-	B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀		1: Spare
0 1		0		C ₆	-	-	-			C ₀		B[7:0] Display Mode for WS[7:0]
0 1			D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀		C[7:0] Display Mode for WS[1:0]
11.550			E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	E ₀		D[7:0] Display Mode for WS[23:16]
	1	-	0	F ₆	0	0	F ₃	F ₂	F ₁	F ₀		E[7:0] Display Mode for WS[31:24]
200001 000			G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	G ₀		F[3:0 Display Mode for WS[35:32] 0: Display Mode 1
	1		H ₇	H ₆	H ₅	H ₄	H ₃	H ₂	H ₁	H ₀		1: Display Mode 2
0 1		3	J ₇	J ₆	J ₅	J ₄	J ₃	J ₂	J ₁	J ₀		F[6]: PingPong for Display Mode 2 0: RAM Ping-Pong disable [POR] 1: RAM Ping-Pong enable G[7:0]~J[7:0] module ID /waveform version. Remarks: 1) A[7:0]~J[7:0] can be stored in OTP 2) RAM Ping-Pong function is not support

WINSTAR Display 22/37 2.13 inch Series

0	0	38	0	0	1	1	1	0	0	0	Write Register for User ID	Write Register for User ID
0	1	-	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	, , , , , , , , , , , , , , , , , , ,	A[7:0]]~J[7:0]: UserID [10 bytes]
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo		Remarks: A[7:0]~J[7:0] can be stored in
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co		OTP
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀		
0	1		E ₇	E ₆	E ₅	E ₄	E ₃	F ₂	E ₁	E ₀		
0	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	G ₀		
0	1		H ₇	H ₆	H ₅	H ₄	H ₃	H ₂	H ₁	H₀		
0	1		17	16	15	14	lз	12	l ₁	lo		
0	1		J ₇	J ₆	J ₅	Já	J ₃	J ₂	J ₁	Jo		
	_											
0	1	39	0	0	0	0	0	0	0 A ₁	1 A ₀	OTP program mode	OTP program mode A[1:0] = 00: Normal Mode [POR] A[1:0] = 11: Internal generated OTP programming voltage Remark: User is required to EXACTLY follow the reference code sequences
0	0	3C	0	0	1	1	1	1	0	0	Border Waveform Control	Select border waveform for VBD
0	1	50	A ₇	A ₆	A ₅	A ₄	0	A ₂	A ₁	Ao	Dordor Traveloriii Contilor	A[7:0] = C0h [POR], set VBD as HIZ.
9			. 11	. 10		. 4			• 11			A [7:6] :Select VBD option
												A[7:6] Select VBD as 00 GS Transition,
												Defined in A[2] and
												01 Fix Level,
												Defined in A[5:4]
												10 VCOM
												11[POR] HiZ
												A [5:4] Fix Level Setting for VBD
												A[5:4] VBD level
												00 VSS
												01 VSH1 10 VSL
												11 VSH2
												A[2] GS Transition control
												A[2] GS Transition control 0 Follow LUT
												(Output VCOM @ RED)
												1 Follow LUT
												A [1:0] GS Transition setting for VBD
												A[1:0] VBD Transition
												00 LUT0
												01 LUT1
												10 LUT2 11 LUT3
			_			L						
0	0	3F	0	0	1	1	1	1	1	1	End Option (EOPT)	Option for LUT end
0	1	and the same	A ₇	A ₆	A ₅	A ₄	Аз	A ₂	A ₁	Ao		A[7:0]= 02h [POR]
oppid.			170/1/20	140 (160)	6/73W	0.80.000	00000000	N/COT	COLUMN TO SERVICE	510 Tool 201		22h Normal.
												07h Source output level keep previous output before power off
										l		provious output before power off
0	0	41	0	1	0	0	0	0	0	1	Read RAM Option	Read RAM Option
0	1		0	0	0	0	0	0	0	Ao	some un establishe ment treature on the December of	A[0]= 0 [POR]
				548			2,699			ora market)		0 : Read RAM corresponding to RAM0x24 1 : Read RAM corresponding to RAM0x24
0	0	44	0	1	0	0	0	1	0	0	Set RAM X - address	Specify the start/end positions of the
0	1		0	0	A ₅	A ₄	Аз	A ₂	A ₁	A ₀	Start / End position	window address in the X direction by an address unit for RAM
0	1		0	0	B ₅	B ₄	Вз	B ₂	Bı	Во		audi 655 uriit i Ul FAIVI
												A[5:0]: XSA[5:0], XStart, POR = 00h B[5:0]: XEA[5:0], XEnd, POR = 15h
		1				1					l .	The state of the s

0	0	45	0	1	0	0	0	1	0	1	Set Ram Y- address	Specify th	e start/en	d position	s of the
0	1	-10	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	Start / End position	window ad	ddress in t	he Y dire	ction by an
0	1		0	0	0	0	0	0	0	A ₈		address u	nit for RA	IVI	
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀		A[8:0]: YS B[8:0]: YE			
0	0	46	0 A ₇	1 A ₆	0 A ₅	0 A ₄	0	1 A ₂	1 A ₁	0 A ₀	Auto Write RED RAM for Regular Pattern	Auto Write A[7:0] = 00		M for Reg	ular Patteri
												A[7]: The A[6:4]: Ste Step of alt to Gate	ep Height,	POR= 00	
												A[6:4]	Height	A[6:4]	Height
												000	8	100	128
												001	16	101	256
												010	32	110	296
															NA On according
												to Source	1AC: -141/	10.01	VA7: -141-
												A[2:0] 000	Width 8	A[2:0] 100	Width 128
												000	16	100	176
												010	32	110	NA
												011	64	111	NA
												BUSY pac operation.	CONTRACTOR OF THE PARTY OF THE	ut high du	ring
0	0	47	0 A ₇	1 A ₆	0 A ₅	0 A ₄	0	1 A ₂	1 A ₁	1 A ₀	Auto Write B/W RAM for Regular Pattern	Auto Write B/W RAM for Regular Patter A[7:0] = 00h [POR] A[7]: The 1st step value, POR = 0 A[6:4]: Step Height, POR= 000 Step of alter RAM in Y-direction accort to Gate			
												A[6:4]	Height	A[6:4]	Height
												000	8	100	128
												001	16 32	101 110	256 296
												010	64	111	NA
												to Source	ep Width, eer RAM ir Width	X-directi) on accordin Width
												A[2:0] 000	8	A[2:0] 100	128
												001	16	101	176
												010	32	110	NA
												011	64	111	NA
												During op high.	eration, B	USY pad	will output
0	0	4E	0	1	0	0	1	1	1	0	Set RAM X address	Make initia	al settings	for the R	AM X
0	1		0	0	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	counter	address in A[5:0]: 00		ess count	er (AC)
0	0	4F	0	1	0	0	1	1	1	1	Set RAM Y address	Make initia	al settings	for the R	AM Y
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	counter	address in	the addr	ess count	
0	1		0	0	0	0	0	0	0	A ₈		A[8:0]: 00	0h [POR].		
-			-							, 40	l	1			
0	0	7F	0	1	1	1	1	1	1	1	NOP		nave any	effect on t	ommand; it he display

8. Optical Specifications

Measurements are made with that the illumination is under an angle of 45 degree, the detection is perpendicular unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур.	Max	Units	Notes
R	White Reflectivity	White	30	35	-	%	8-1
CR	Contrast Ratio	Indoor	8:1		-		8-2
GN	2Grey Level	ı		DS+(WS-DS)*n(m-1)			8-3
T update	Image update time	at 25 °C		3	-	sec	
Life		Topr		1000000times or 5years			·

Notes:

- 8-1. Luminance meter: Eye-One Pro Spectrophotometer.
- 8-2. CR=Surface Reflectance with all white pixel/Surface Reflectance withall black pixels.
- 8-3 WS: White state, DS: Dark state

9. Handling, Safety and Environment Requirements

Warning

The display glass may break when it is dropped or bumped on a hard surface. Handle with

care. Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

Caution

The display module should not be exposed to harmful gases, such as aalkaligases, which corrode electronic components. Disassembling the display module.

Disassembling the display module can cause permanent damage and invalidates the warranty agreements.

Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged. Moreover the display is sensitive to static electricity and other rough environmental conditions.

	Data sheet status
Product specification	This data sheet contains final product specifications.
	Product specification

Limiting values

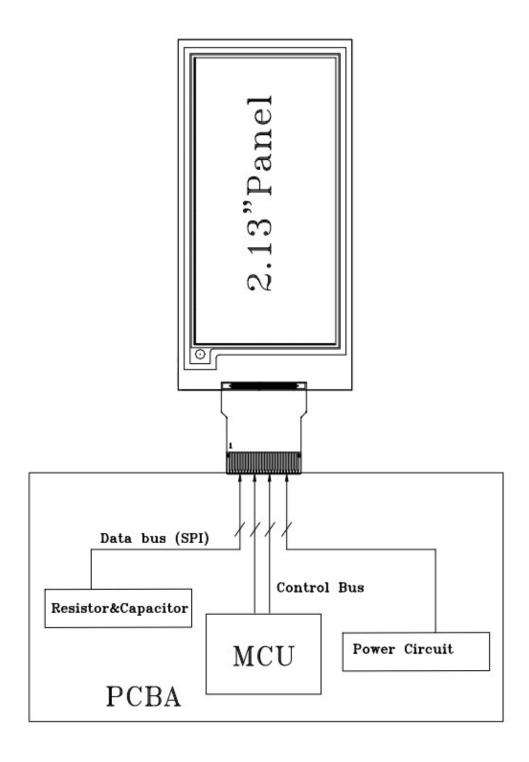
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC

134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

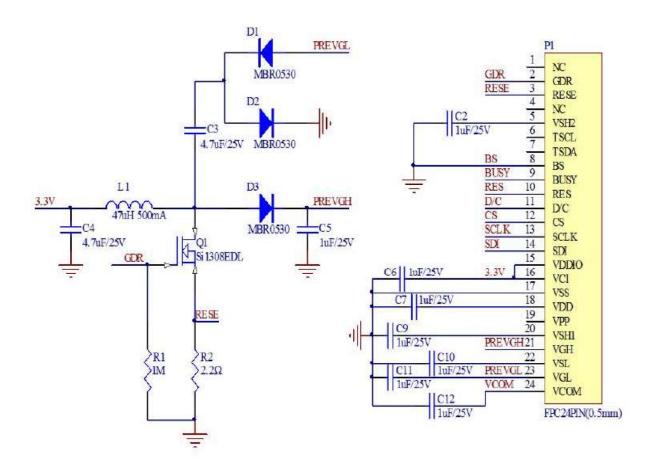
Where application information is given, it is advisory and does not form part of the specification.

WINSTAR Display 26/37 2.13 inch Series


10.Reliability test

NO	Test items	Test condition
1	Low-Temperature Storage	T = -25°C, 240 h Test in white pattern
2	High-Temperature Storage	T=70°C, RH=40%, 240h Test in white pattern
3	High-Temperature Operation	T=50°C, RH=35%, 240h
4	Low-Temperature Operation	0°C, 240h
5	High-Temperature, High-Humidity Operation	T=40°C, RH=80%, 240h
6	High Temperature, High Humidity Storage	T=50°C, RH=80%, 240h Test in white pattern
7	Temperature Cycle	1 cycle:[-25° C 30min]→[+70 ° C 30 min]: 50 cycles Test in white pattern
8	UV exposure Resistance	765W/m² for 168hrs,40 °C Test in white pattern
9	ESD Gun	Air+/-15KV;Contact+/-8KV (Test finished product shell, not display only) Air+/-8KV;Contact+/-6KV (Naked EPD display, no including IC and FPC area) Air+/-4KV;Contact+/-2KV (Naked EPD display, including IC and FPC area)

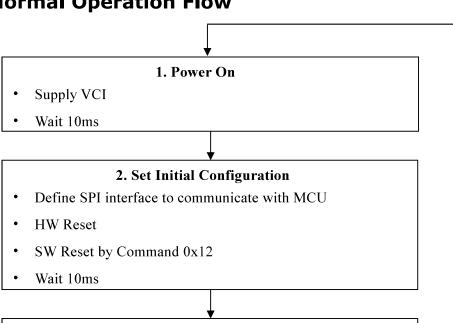
Note: Put in normal temperature for 1hour after test finished, display performance is ok.



11. Block Diagram

12. Reference Circuit

Part Name	Requirements for spare part
C1—C12	0603/0805; X5R/X7R;Voltage Rating:≥25V
R1、R2	0603/0805;1% variation,≥0.05W
D1—D3	MBR0530: 1)Reverse DC Voltage≥30V 2)Io≥500mA
D1—D3	3)Forward voltage ≤430mV
01	Si1308EDL:1)Drain-Source breakdown voltage≥30V
Q1	2)Vgs(th)≤1.5V 3)Rds(on)≤400mΩ
L1	refer to NR3015: Io=500mA(max)
P1	24pins,0.5mm pitch


13. Matched Development Kit

Our Development Kit designed for SPI E-paper Display aims to help users to learn how to use E-paper Display more easily. It can refresh black-white E-paper Display and three-color (black, white and red/Yellow) WINSTAR Display 's E-paper Display. And it is also added the functions of USB serial port, Raspberry Pi and LED indicator light ect. DESPI Development Kit consists of the development board and the pinboard.

14. Typical Operating Sequence

14.1 Normal Operation Flow

3. Send Initialization Code

- Set gate driver output by Command 0x01
- Set display RAM size by Command 0x11, 0x44, 0x45
- Set panel border by Command 0x3C

4. Load Waveform LUT

- Sense temperature by int/ext TS by Command 0x18
- Load waveform LUT from OTP by Command 0x22, 0x20 or by MCU
- Wait BUSY Low

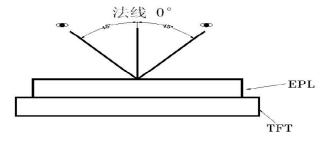
5. Write Image and Drive Display Panel

- Write image data in RAM by Command 0x4E, 0x4F, 0x24, 0x26
- Set softstart setting by Command 0x0C
- Drive display panel by Command 0x22, 0x20
- Wait BUSY Low

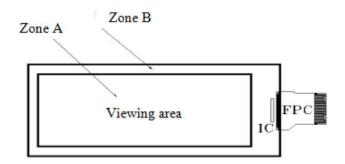
6. Power Off

- Deep sleep by Command 0x10
- Power OFF

15. Inspection condition


15. 1 Environment

Temperature: 25±3℃ Humidity: 55±10%RH


15. 2 Illuminance

Brightness:1200~1500LUX;distance:20-30CM;Angle:Relate 30°surround.

15.3 Inspection method

15. 4 Display area

WINSTAR Display 32/37 2.13 inch Series

15. 5 Inspection standard

15. 5.1 Electric inspection standard

NO.	Item	Standard	Defect level	Method	Scope
1	Display	Display complete Display uniform	MA		
2	Black/White spots	D≤0.25mm, Allowed 0.25mm < D≤0.4mm ∘ N≤3, and Distance≥5mm 0.4mm < D Not Allow	MI	Visual inspection	
3	Black/White spots (No switch)	L \leq 0.6mm, W \leq 0.2mm, N \leq 1 L \leq 2.0mm,W $>$ 0.2mm, Not Allow L $>$ 0.6mm, Not Allow	Specialists	Visual/ Inspection card	Zone A
4	Ghost image	Allowed in switching process	MI	Visual inspection	
5	Flash spots/ Larger FPL size	Flash spots in switching, Allowed FPL size larger than viewing area, Allowed	MI	Visual/ Inspection card	Zone A Zone B
6	Display wrong/Missing	All appointed displays are showed correct	MA	Visual inspection	Zone A
7	Short circuit/ Circuit break/ Display abnormal	Not Allow		CORP.	

WINSTAR Display 33/37 2.13 inch Series

15.5.2 Appearance inspection standard

NO.	Item	Standard	Defect level	Method	Scope
1	B/W spots /Bubble/ Foreign bodies/ Dents	D= $(L+W)/2$ D ≤ 0.25 mm, Allowed 0.25mm $<$ D ≤ 0.4 mm, N ≤ 3 D >0.4 mm, Not Allow	MI	Visual inspection	Zone A
2	Glass crack	Not Allow	MA	Visual	Zone A Zone B
3	Dirty	Allowed if can be removed	MI	/ Microscope	Zone A Zone B
4	Chips/Scratch/ Edge crown	X≤3mm,Y≤0.5mmAnd without affecting the electrode is permissible 2mm≤X or 2mm≤Y Not Allow W≤0.1mm,L≤5mm, No harm to the electrodes and N≤2 allow	MI	Visual / Microscope	Zone A Zone B
5	TFT Cracks	Not Allow	MA	Visual / Microscope	Zone A Zone B
6	Dirty/ foreign body	Allowed if can be removed/ allow	MI	Visual / Microscope	Zone A / Zone B
7	FPC broken/ Goldfingers xidation/ scratch	Not Allow	MA	Visual / Microscope	Zone B

WINSTAR Display 34/37 2.13 inch Series

8	TFT edge bulge /TFT chromatic aberration	TFT edge bulge: $X \le 3$ mm, $Y \le 0.3$ mm Allowed TFT chromatic aberration :Allowed	MI	Visual / Microscope	Zone A Zone B
9	PCB damaged/ Poor welding/ Curl	PCB (Circuit area) damaged Not Allow PCB Poor welding Not Allow PCB Curl≤1%			
10	Edge glue height/ Edge glue bubble	Edge Adhesives H≤PS surface (Including protect film) Edge adhesives seep in≤1/2 Margin width Length excluding Edge adhesives bubble: bubble Width ≤1/2 Margin width; Length ≤0.5mm₀ n≤5	MI	Visual / Ruler	Zone B
11	Protect film	Surface scratch but not effect protect function, Allowed		Visual Inspection	
12	Silicon glue	Thickness ≤ PS surface(With protect film): Full cover the IC; Shape: The width on the FPC ≤ 0.5mm (Front) The width on the FPC ≤ 1.0mm (Back) smooth surface, No obvious raised.	MI	Visual Inspection	
13	Warp degree (TFT substrate)	t≤2.0mm	MI	Ruler	
14	Color difference in COM area (Silver point area)	Allowed		Visual Inspection	

16. Packing

TBD

17. Precautions

- (1) Do not apply pressure to the EPD panel in order to prevent damaging it.
- (2) Do not connect or disconnect the interface connector while the EPD panel is in operation.
- (3) Do not touch IC bonding area. It may scratch TFT lead or damage IC function.
- (4) Please be mindful of moisture to avoid its penetration into the EPD panel, which may cause damage during operation.
- (5) High temperature, high humidity, sunlight or fluorescent light may degrade the EPD panel's performance. Please do not expose the unprotected EPD panel to high temperature, high humidity, sunlight, or fluorescent for long periods of time.