

2.7 inch E-paper Display Series

WAA0270A2AAA7NXXX000

Product Specifications

Customer	Standard
Description	2.7" E-PAPER DISPLAY
Model Name	WAA0270A2AAA7NXXX000
Date	2025/02/12
Revision	1.0

Design Engineering					
Approval Check Design					

REVISION HISTORY

Rev	Date	Item	Page	Remark
1.0	02.12.2025	New Creation	ALL	

CONTENTS

1.	Over View	6
2.	Features	6
3.	Mechanical Specification	6
4.	Mechanical Drawing of EPD Module	7
5.	Input/output Pin Assignment	8
6.	Electrical Characteristics	9
	6.1 Absolute Maximum Rating	9
	6.2 Panel DC Characteristics	
	6.3 Panel AC Characteristics	11
	6.3.1 MCU Interface Selection	11
	6.3.2 MCU Serial Interface (4-wire SPI)	11
	6.3.3 MCU Serial Interface (3-wire SPI)	12
	6.3.4 Interface Timing	13
7.	Command Table	14
8.	Optical Specification	27
9.	Handling, Safety, and Environment Requirements	28
10.	Reliability Test	29

11.	Block Diagram	30
12.	Reference Circuit	31
13.	Matched Development Kit	32
14.	Typical Operating Sequence	33
	14.1 Normal Operation Flow	33
15.	Inspection condition	34
	15.1 Environment	34
	15.2 Illuminance	34
	15.3 Inspect method	34
	15.4 Display area	34
	15.5 Inspection standard	35
	15.5.1 Electric inspection standard	35
	15.5.2 Appearance inspection standard	36
16.	. Packaging	.38
17.	. Precautions	.39

2.7 inch Series

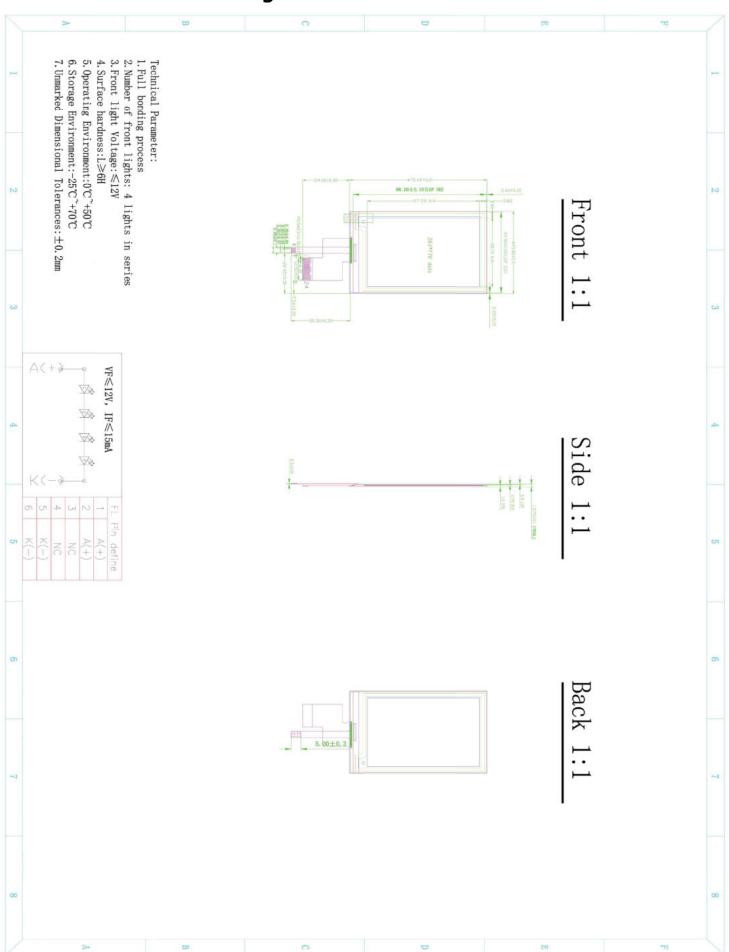
1. Over View

WAA0270A2AAA7NXXX000 is an Active Matrix Electrophoretic Display (AM EPD), with front light panel. The display is capable to display image at 1-bit white, black full display capabilities. The 2.7inch active area contains 264×176pixels. The module is a TFT-array driving electrophoresis display, with integrated circuits including gate driver, source driver, MCU interface, timing controller, oscillator, DC-DC, SRAM, LUT, VCOM. Module can be used in portable electronic devices, such as Electronic Shelf Label (ESL) System.

2.Features

On-chip oscillator

264×176 pixels display
High contrast
High reflectance
Ultra wide viewing angle Ultra low power consumptionPure
reflective mode
Bi-stable display
Commercial temperature range
Landscape portrait modes
Hard-coat antiglare display surface
Ultra Low current deep sleep mode
On chip display RAM
Waveform can stored in On-chip OTP or written by MCU
Serial peripheral interface available


On-chip booster and regulator control for generating VCOM, Gate and Source driving voltage I2C signal master interface to read external temperature sensorBuilt-in temperature sensor With front light panel, 4 LEDs in serial, operating voltage: 12V

3. Mechanical Specifications

Parameter	Specifications	Unit	Remark
Screen Size	2.7	Inch	
Display Resolution	264(H)×176(V)	Pixel	Dpi:117
Active Area	38.19×57.29	mm	
Pixel Pitch	0.217×0.217	mm	
Pixel Configuration	Rectangle		
Outline Dimension	45.8 (H)×70.42(V) ×1.58(D)	mm	
Weight	8.84±0.5	g	

4. Mechanical Drawing of EPD module

5. Input /Output Pin Assignment

No.	Name	I/O	Description	Remark
1	NC		Do not connect with other NC pins	Keep Open
2	GDR	О	N-Channel MOSFET Gate Drive Control	
3	RESE	I	Current Sense Input for the Control Loop	
4	NC	NC	Do not connect with other NC pins	Keep Open
5	VSH2	С	Positive Source driving voltage(Red)	
6	TSCL	О	I ² C Interface to digital temperature sensor Clock pin	
7	TSDA	I/O	I ² C Interface to digital temperature sensor Data pin	
8	BS1	I	Bus Interface selection pin	Note 5-5
9	BUSY	О	Busy state output pin	Note 5-4
10	RES#	I	Reset signal input. Active Low.	Note 5-3
11	D/C#	I	Data /Command control pin	Note 5-2
12	CS#	I	Chip select input pin	Note 5-1
13	SCL	I	Serial Clock pin (SPI)	
14	SDA	I	Serial Data pin (SPI)	
15	VDDIO	P	Power Supply for interface logic pins It should be connected with VCI	
16	VCI	P	Power Supply for the chip	
17	VSS	P	Ground	
18	VDD	С	Core logic power pin VDD can be regulated internally from VCI. A capacitor should be connected between VDD and VSS	
19	VPP	P	FOR TEST	
20	VSH1	С	Positive Source driving voltage	
21	VGH	С	Power Supply pin for Positive Gate driving voltage and VSH1	
22	VSL	С	Negative Source driving voltage	
23	VGL	С	Power Supply pin for Negative Gate driving voltage VCOM and VSL	
24	VCOM	C	VCOM driving voltage	

I = Input Pin, O = Output Pin, I/O = Bi-directional Pin (Input/output), P = Power Pin, C = Capacitor Pin

Note 5-1: This pin (CS#) is the chip select input connecting to the MCU. The chip is enabled for MCU communication only when CS# is pulled LOW.

Note 5-2: This pin is (D/C#) Data/Command control pin connecting to the MCU in 4-wire SPI mode. When the pin is pulled HIGH, the data at SDA will be interpreted as data. When the pin is pulled LOW, the data at SDA will be interpreted as command.

Note 5-3: This pin (RES#) is reset signal input. The Reset is active low.

Note 5-4: This pin is Busy state output pin. When Busy is High, the operation of chip should not be interrupted, command should not be sent. The chip would put Busy pin High when –Outputting display waveform -Communicating with digital temperature sensor

Note 5-5: Bus interface selection pin

BS1 State	MCU Interface
L	4-lines serial peripheral interface(SPI) - 8 bits SPI
Н	3- lines serial peripheral interface(SPI) - 9 bits SPI

6. Electrical Characteristics6.1 Absolute Maximum Rating

Parameter	Symbol	Rating	Unit
Logic supply voltage	VCI	-0.5 to +6.0	V
Logic Input voltage	VIN	-0.5 to VCI +0.5	V
Logic Output voltage	VOUT	-0.5 to VCI +0.5	V
Operating Temp range	TOPR	0 to +50	° C
Storage Temp range	TSTG	-25 to+70	° C
Optimal Storage Humidity	HSTGo	55±10	%RH

Note:

Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Panel DC Characteristics tables.

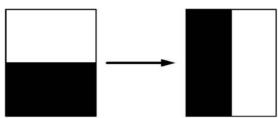
6.2 Panel DC Characteristics

The following specifications apply for: VSS=0V, VCI=3.0V, TOPR =25°C.

WINSTAR Display 9/39 2.7 inch Series

Parameter	Symbol	Conditions	Applica ble pin	Min.	Typ.	Max	Units
Single ground	V _{ss}			1	0	-	V
Logic supply voltage	V_{CI}		VCI	2.2	3.0	3.7	V
Core logic voltage	$V_{ m DD}$		VDD	1.7	1.8	1.9	V
High level input voltage	V _{IH}	-		0.8 V _{CI}	_	-	V
Low level input voltage	V _{IL}	-		-	-	0.2 V _{CI}	V
High level output voltage	V _{OH}	IOH = - 100uA		0.9 VCI	-	-	V
Low level output voltage	V _{OL}	IOL = 100uA			-	$0.1~\mathrm{V_{CI}}$	V
Typical power	P _{TYP}	$V_{\rm CI} = 3.0 \rm V$			9		mW
Deep sleep mode	P _{STPY}	$V_{CI} = 3.0 V$			0.003		mW
Typical operating current	Iopr_V _{CI}	$V_{CI} = 3.0 V$		-	3		mA
Full update time		25 °C			3		sec
Fast update time	-	25 °C			1.5		sec
Partial update time		25 °C			0.42		sec
Sleep mode current	Islp_V _{CI}	DC/ DC off No clock No input load Ram data retain	-	-	20		uA
Deep sleep mode current	Idslp_V _{CI}	DC/ DC off No clock No input load Ram data not retain	-	-	1	5	uA

Notes:


- 1) Refresh time: the time it takes for the whole process from the screen change to the screen stabilization.
- 2) The difference between different refresh methods:

Full refresh: The screen will flicker several times during the refresh process;

Fast Refresh: The screen will flash once during the refresh process; Partial refresh: The screen does not flicker during the refresh process.

During the fast refresh or partial refresh of the electronic paper, it is recommended to add a full-screen refresh after 5 consecutive operations to reduce the accumulation of afterimages on the screen.

- 1. The typical power is measured with following transition from horizontal 2 scale pattern to vertical 2 scale pattern.
- 2. The deep sleep power is the consumed power when the panel controller is in deep sleep mode.
- 3. The listed electrical/optical characteristics are only guaranteed under the controller & waveform provided by WINSTAR DISPLAY.

6.3 Panel AC Characteristics

6.3.1 MCU Interface Selection

MCU interface is pin selectable by BS1 shown in Table 6-1.

Table 6-1: Interface pins assignment under different MCU interface

MCU Interface	Pin Name						
	BS1	RES#	CS#	D/C#	SCL	SDA	
4-wire serial peripheral interface (SPI)	L	RES#	CS#	DC#	SCL	SDA	
3-wire serial peripheral interface (SPI) – 9 bits SPI	н	RES#	CS#	L	SCL	SDA	

Note: (1) L is connected to VSS and H is connected to VDDIO

6.3.2 MCU Serial Interface (4-wire SPI)

The 4-wire SPI consists of serial clock SCL, serial data SDA, D/C# and CS#. The control pins status in 4-wire SPI in writing command/data is shown in Table 6-2 and the write procedure 4-wire SPI is shown in Table 6-2

Table 6-2: Control pins status of 4-wire SPI

Function	SCL pin	SDA pin	D/C# pin	CS# pin
Write command	1	Command bit	L	L
Write data	1	Data bit	Н	L

Note:(1) L is connected to VSS and H is connected to VDDIO

- (2) ↑ stands for rising edge of signal
- (3) SDA (Write Mode) is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0. The level of D/C# should be kept over the whole byte. The data byte in the shift register is written to the Graphic Display Data RAM (RAM)/Data Byte register or command Byte register according to D/C# pin.

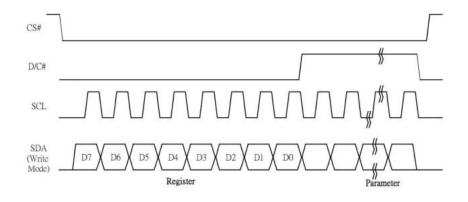


Figure 6-1: Write procedure in 4-wire SPI mode

In the read operation (Command 0x1B, 0x27, 0x2D, 0x2E, 0x2F, 0x35). After CS # is pulled low, the first byte sent is command byte, D/C# is pulled low. After com mand byte sent, the following byte(s) read are data byte(s), so D/C# bit is then pulled high. An 8-bit data will be shifted out on every clock falling edge. The serial data SDA bit shifting sequence is D7, D6, to D0 bit. Figure 6-2 shows the read procedure in 4-wire SPI.

WINSTAR Display

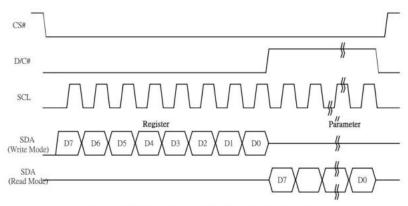


Figure 6-2: Read procedure in 4-wire SPI mode

6.3.3 MCU Serial Interface (3-wire SPI)

The 3-wire SPI consists of serial clock SCL, serial data SDA and CS#. The operation is similar to 4-wire SPI while D/C# pin is not used and it must be tied to LOW. The control pins status in 3-wire SPI is shown in Table 6-3.

In the write operation, a 9-bit data will be shifted into the shift register on every clock rising edge. The bit shifting sequence is D/C# bit, D7 bit, D6 bit to D0 bit. The first bit is D/C# bit which determines the following byte is command or data. When D/C# bit is 0, the following byte is command. When D/C# bit is 1, the following byte is data. Table 6-3 shows the write procedure in 3-wire SPI

 Function
 SCL pin
 SDA pin
 D/C# pin
 CS# pin

 Write command
 ↑
 Command bit
 Tie LOW
 L

 Write data
 ↑
 Data bit
 Tie LOW
 L

Table 6-3: Control pins status of 3-wire SPI

Note: (1) L is connected to VSS and H is connected to VDDIO

(2) ↑ stands for rising edge of signal

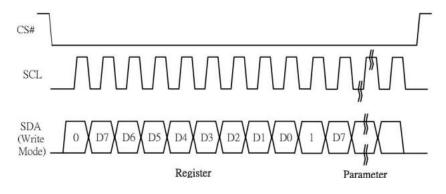


Figure 6-3: Write procedure in 3-wire SPI

In the read operation (Register 0x1B, 0x27, 0x2D, 0x2E, 0x2F, 0x35). SDA data are transferred in the unit of 9 bits. After CS# pull low, the first byte is command by te, the D/C# bit is as 0 and following with the register byte. After command byte send, the following byte(s) are data byte(s), with D/C# bit is 1.After D/C# bit sending from MCU, an 8-bit data will be shifted out on every clock falling edge. The serial data SDA bit shifting sequence is D7, D6, to D0 bit. Figure 6-4 shows the read procedure in 3-wire SPI.

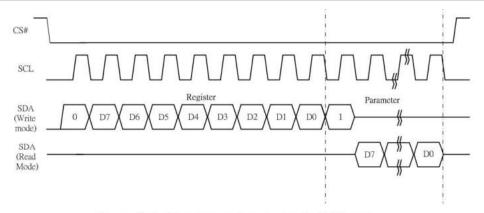
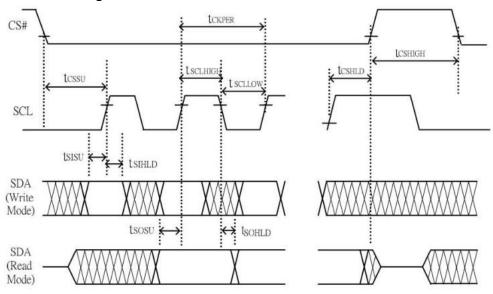


Figure 6-4: Read procedure in 3-wire SPI mode

6.3.4 Interface Timing

The following specifications apply for: VDDIO - VSS = 2.2V to 3.7V, CL=20pF


Write mode

Symbol	Parameter	Min	Тур	Max	Unit
fscL	SCL frequency (Write Mode)		-	20	MHz
tcssu	Time CS# has to be low before the first rising edge of SCLK	60	-	-	ns
tcshld	Time CS# has to remain low after the last falling edge of SCLK	65	-	-	ns
tcshigh	Time CS# has to remain high between two transfers	100	-	-	ns
tschiigh	Part of the clock period where SCL has to remain high	25	-	-	ns
tscllow	Part of the clock period where SCL has to remain low	25	-	-	ns
tsisu	Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL	10	150	9.50	ns
tsiHLD	Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL	40	-	72	ns

Read mode

Symbol	Parameter	Min	Тур	Max	Unit
fscL	SCL frequency (Read Mode)	-	-	2.5	MHz
tcssu	Time CS# has to be low before the first rising edge of SCLK	100	-	27	ns
tcshld	Time CS# has to remain low after the last falling edge of SCLK	50	-	-	ns
tcsHIGH	Time CS# has to remain high between two transfers	250	-	-	ns
tsclnigh	Part of the clock period where SCL has to remain high	180	-	-	ns
tscllow	Part of the clock period where SCL has to remain low	180	-	-	ns
tsosu	Time SO(SDA Read Mode) will be stable before the next rising edge of SCL	-	50	-	ns
tsohld	Time SO (SDA Read Mode) will remain stable after the falling edge of SCL	-	0		ns

Note: All timings are based on 20% to 80% of VDDIO-VSS

WINSTAR Display

7. Command Table

/M/#	Charles Control to the	d Tal	AV.	D6	D5	D4	D3	D2	D1	DO	Command	Description	on		
377.77				100								Control of Control			
0	0	01	0	0	0	0	0	0	0	1	Driver Output control	Gate settii A[8:0]= 12		1 296 MII	X
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	-	MUX Gate			
0	1		0	0	0	0	0	0	0	A ₈		2.71		5	
0	1		0	0	0	0	0	B ₂	B ₁	Bo		B [2:0] = 0 Gate scan B[2]: GD Selects th GD=0 [PC G0 is the output sec GD=1, G1 is the output sec SM=0 [PC G0, G1, G interlaced SM=1, G0, G2, G	e 1st outport, and the port of	put Gate putput cha G0,G1, G putput cha G1, G0, C prder of ga	nnel, gate 62, G3, nnel, gate 63, G2, ate driver.
												B[0]: TB TB = 0 [P0 TB = 1, so			
0	0	03	0		0		0	0	1	1	Gate Driving voltage	TB = 0 [P0 TB = 1, so	can from	G295 to G	
21-1	0	03	0	0	0	0 A ₄	0 A ₃	0 A ₂	1 A ₁	1 A ₀	Gate Driving voltage Control	TB = 0 [P0 TB = 1, so Set Gate 0 A[4:0] = 00	driving vo	G295 to G	0.
S I S S	70	03	151	939	C Care		200	0.0		113		TB = 0 [PC TB = 1, sc	driving vo	G295 to G	0.
S I S S	70	03	151	939	C Care		200	0.0		113		TB = 0 [P0 TB = 1, so Set Gate of A[4:0] = 00 VGH setting	driving vo	G295 to G oltage 0V to 20V	0.
21-3	70	03	151	939	C Care		200	0.0		113		TB = 0 [PG TB = 1, so Set Gate of A[4:0] = 00 VGH settin A[4:0]	driving vo 0h [POR] ng from 1	0V to 20V	v VGH
21-3	70	03	151	939	C Care		200	0.0		113		TB = 0 [PG TB = 1, sc Set Gate of A[4:0] = 00 VGH settin A[4:0] 00h	driving vo 0h [POR] ng from 1 VGH 20	OV to 20V A[4:0]	0. VGH 15
21-1	70	03	151	939	C Care		200	0.0		113		TB = 0 [PC TB = 1, sc TB = 1, sc TB = 0] Set Gate of A[4:0] = 00 VGH settin A[4:0] 00h 03h	driving vo 0h [POR] ng from 1 VGH 20	G295 to G oltage OV to 20V A[4:0] ODh OEh	VGH 15 15.5
21-1	70	03	151	939	C Care		200	0.0		113		TB = 0 [PC TB = 1, sc	driving vo 0h [POR] ng from 1 VGH 20 10 10.5	OV to 20V A[4:0] ODh OEh OFh	VGH 15 15.5 16
21-1	70	03	151	939	C Care		200	0.0		113		TB = 0 [PG TB = 1, so Set Gate of A[4:0] = 00 VGH settin A[4:0] 00h 03h 04h 05h 06h	driving vo 0h [POR] ng from 1 VGH 20 10 10.5 11	OV to 20V A[4:0] ODh OFh 10h 11h	VGH 15 15.5 16 16.5
21-3	70	03	151	939	C Carr		200	0.0		113		TB = 0 [PG TB = 1, sc Set Gate of A[4:0] = 00 VGH settin A[4:0] 00h 03h 04h 05h 06h 07h	driving vo 0h [POR] ng from 1 VGH 20 10 10.5 11 11.5	0V to 20V A[4:0] 0Dh 0Eh 0Fh 10h 11h	VGH 15 15.5 16 16.5 17
21-3	70	03	151	939	C Carr		200	0.0		113		TB = 0 [PG TB = 1, sc Set Gate of A[4:0] = 00 VGH settin A[4:0] 00h 03h 04h 05h 06h 07h 08h	driving vo 0h [POR] ng from 1 VGH 20 10 10.5 11 11.5 12	0V to 20V A[4:0] 0Dh 0Eh 0Fh 10h 11h 12h 13h	VGH 15 15.5 16 16.5 17 17.5
Steep.	70	03	151	939	C Carr		200	0.0		113		TB = 0 [PG TB = 1, sc A[4:0] = 00 VGH settin A[4:0] 00h 03h 04h 05h 06h 07h 08h 07h	driving vo 0h [POR] ng from 1 VGH 20 10 10.5 11 11.5 12 12.5	G295 to G oltage OV to 20V A[4:0] ODh OEh OFh 10h 11h 12h 13h 14h	VGH 15 15.5 16 16.5 17 17.5 18
S I S S	70	03	151	939	C Carr		200	0.0		113		TB = 0 [PG TB = 1, sc A[4:0] = 00 VGH settin A[4:0] 00h 03h 04h 05h 06h 07h 08h 07h	driving vo 0h [POR] ng from 1 VGH 20 10.5 11 11.5 12 12.5 12.5	0V to 20V A[4:0] 0Dh 0Eh 0Fh 10h 11h 12h 13h 14h	VGH 15 15.5 16 16.5 17 17.5 18 18.5
0 0	70	03	151	939	C Carr		200	0.0		113		TB = 0 [PG TB = 1, so	driving vo 0h [POR] ng from 1 VGH 20 10 10.5 11 11.5 12 12.5 12 12.5	0V to 20V A[4:0] 0Dh 0Eh 0Fh 10h 11h 12h 13h 14h 15h	VGH 15 15.5 16 16.5 17 17.5 18 18.5 19
210.0	70	03	151	939	C Carr		200	0.0		113		TB = 0 [PG TB = 1, so	driving vo 0h [POR] ng from 1 VGH 20 10 10.5 11 11.5 12 12.5 13 13.5	OV to 20V A[4:0] ODh OEh OFh 10h 11h 12h 13h 14h 15h 16h	VGH 15 15.5 16 16.5 17 17.5 18 18.5 19 19.5 20
2100	70	03	151	939	C Carr		200	0.0		113		TB = 0 [PG TB = 1, so	driving vo 0h [POR] ng from 1 VGH 20 10 10.5 11 11.5 12 12.5 12 12.5	0V to 20V A[4:0] 0Dh 0Eh 0Fh 10h 11h 12h 13h 14h 15h	VGH 15 15.5 16 16.5 17 17.5 18 18.5 19

/W#	man		D7	D6	D5	D4	D3	D2	D1	DO	Comn	nand		Description
0	0	04	0	0	0	0	0	1	0	0	Java Cerur	e Driving	voltage	Set Source driving voltage
0	1	04	A7	A ₆	A5	A ₄	Аз	A ₂	A ₁	Ao	Contro		voltage	A[7:0] = 41h [POR], VSH1 at 15V
	-		Town or a little o	100000		Manager 1	-		Table 100		-			B [7:0] = A8h [POR], VSH2 at 5V.
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀	-			C[7:0] = 32h [POR], VSL at -15V
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co			<u> </u>	Remark: VSH1>=VSH2
/SI	/B[7] 11/VS .8V		voltag	je se	tting	from	2.4V	VS	7]/B[7 SH1/\ 17V			e setting	from 9V	C[7] = 0, VSL setting from -5V to -17V
	B[7:0]	VSH	1/VSH2	A/E	3[7:0]	VSH1	I/VSH2		A/B[7:0]	VS	H1/VSH2	A/B[7:0]	VSH1/VSH2	C[7:0] VSL
_	BEh		2.4		Fh	200	5.7		23h		9	3Ch	14	0Ah -5
	8Fh 90h	-	2.5	-	30h 31h	-	5.8	-	24h 25h	-	9.2	3Dh 3Eh	14.2	0Ch -5.5
	91h	_	2.7	_	32h	_	6		26h		9.6	3Fh	14.6	0Eh -6
	92h		2.8		33h	_	3.1		27h		9.8	40h	14.8	10h -6.5 12h -7
	93h		2.9	2 30	34h	13 13	3.2	4	28h	9)	10	41h	15	14h -7.5
	94h 95h		3.1		35h 36h		6.3 6.4		29h 2Ah	9	10.2	42h 43h	15.2 15.4	16h -8
_	96h		3.2	7.7	37h	_	3.5	-	2Bh	+	10.6	44h	15.6	18h -8.5
	97h	-	3.3		38h	20	3.6	2-	2Ch	33	10.8	45h	15.8	1Ah -9
	98h 99h		3.4	0.5	S9h SAh	100	6.7 6.8		2Dh 2Eh		11.2	46h 47h	16 16.2	1Ch -9.5
_	99n 9Ah		3.6	- C	Bh		3.9	-	2Fh	+	11.4	4/h 48h	16.4	1Eh -10
	9Bh		3.7		Ch	-	7		30h		11.6	49h	16.6	20h -10.5
	9Ch	_	3.8		Dh		7.1		31h		11.8	4Ah	16.8	22h -11 24h -11.5
	9Dh 9Eh	, ×	3.9 4	-	Eh Eh		7.2	-	32h	+	12.2	4Bh Other	17 NA	26h -12
	9Fh		4.1	S 5.00	00h		7.4		34h	4	12.4	Other	I INA	28h -12.5
	A0h		4.2	500	21h	16	7.5		35h		12.6			2Ah -13
_	A1h	500	4.3	. (2)	2h	103	7.6		36h		12,8			2Ch -13.5
_	A2h A3h		4.4 4.5	.5 750	3h 34h	100	7.7	_	37h 38h		13.2			2Eh -14
	446		4.0 4.0	100	Shi	1.0	.9	-	391		13.4			30h -14.5
	45h		4.7		26h		8	-	3Ah	+	13.6			32h -15
.9	A6h		4.8		7h	8	3.1		3Bh		13.8			34h -15.5
	A7h	-	4.9		8h	_	3.2	400		-04	7.1-			36h -16 38h -16.5
	A8h A9h	-	5.1		9h Ah		3.4							3Ah -17
	AAh	1	5.2		Bh		3.5							Other NA
	ABh		5.3		Ch	100	3.6							
- 50	ACh ADh		5.4 5.5	100	Dh Eh		3.7							
- 0	AEh		5.6	- 22	ther	100	8.8 NA							
103	30.3038	. 38		_ 5	71.00 E	- 10								
0	0	08	0	0	0	0	1	0	0	0		Code Sel	ting	Program Initial Code Setting
										11		, og, dill		The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	09	0	0	0	0	1	0	0	1			for Initial	Write Register for Initial Code Setting
0	1		A ₇	A ₆	A ₅	A ₄	Аз	A ₂	A ₁	A ₀	Code	Setting		Selection A[7:0] ~ D[7:0]: Reserved
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	B ₀				Details refer to Application Notes of Initi
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co				Code Setting
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀				
0	0	0A	0	0	0	0	1	0	1	0				Read Register for Initial Code Setting

-	D/C#	d Tal	D7	D6	D5	D4	D3	D2	D1	DO	Command	Description	
0	0	0C	0	0	0	0	1	1	0	0	Booster Soft start	_	with Phase 1, Phase 2 and Phase 3
0	1	00	1	A ₆	A ₅	A ₄	A3	A ₂	A ₁	Ao	Control		rent and duration setting.
0	1		1	2010918	B ₅	200	A Delice	15.000		Service	Vance-sind/env	A[7:0] -> Soft sta	art setting for Phase1
	1 121		1 32	B ₆	1000	B ₄	B ₃	B ₂	B ₁	B ₀		= 8Bh	[POR]
0	1		1	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co			art setting for Phase2 [POR]
0	1		0	0	D ₅	D ₄	Dз	D ₂	D ₁	Do			art setting for Phase3
													[POR]
												D[7:0] -> Duration = 0Fh	[POR]
												Bit Descrip	otion of each byte:
												AND THE PARTY OF T	5:0] / C[6:0]: Driving Strength
												Bit[6:4]	Selection
												000	1(Weakest)
												001	2
												010	3
												011	4
												100	5
												101	6
												110	7
												111	8(Strongest)
												Bit[3:0]	Min Off Time Setting of GDR
												0000	[Time unit]
													NA
												0011	0.0
												0100	2.6
												0101	3.2
												0110	3.9
												0111	4.6
												1000	5.4
												1001	6.3
												1010	7.3
												1011	8.4
												1100	9.8
												1101	11.5
												1110	13.8
												1111	16.5
												D[5:4]: du D[3:2]: du	ation setting of phase uration setting of phase 3 uration setting of phase 2 uration setting of phase 1
												Bit[1:0]	Duration of Phase [Approximation]
												00	10ms
												01	20ms
												10	30ms
	C.											11	40ms
ķ	0	10	0	0	0	1	0	0	0	0	Deep Sleep mode	Deep Sleep	mode Control:
	1	150	0	0	0	0	0	0	A ₁	Ao	- Sp - Sop mode		Description
95	- 1		J	U	U	9	J			7.00			Normal Mode [POR]
													Enter Deep Sleep Mode 1
												100	Enter Deep Sleep Mode 2
												After this co	mmand initiated, the chip w
												keep output Remark:	Sleep Mode, BUSY pad will high. p Sleep mode, User require
													RESET to the driver

Com	man	d Ta	ble				M = 0	,	· ·	n — V	511	w.
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	11	0	0	0	1	0	0	0	1	Data Entry mode setting	Define data entry sequence
0	1		0	0	0	0	0	A2	Aı	Ao		A[2:0] = 011 [POR] A [1:0] = ID[1:0] Address automatic increment / decrement setting The setting of incrementing or decrementing of the address counter can be made independently in each upper and lower bit of the address. 00 – Y decrement, X decrement, 01 – Y decrement, X increment, 10 – Y increment, X increment [POR] A[2] = AM Set the direction in which the address counter is updated automatically after data are written to the RAM. AM= 0, the address counter is updated in the X direction. [POR] AM = 1, the address counter is updated in the Y direction.
0	0	12	0	0	0	1	0	0	1	0	SW RESET	It resets the commands and parameters to their S/W Reset default values except R10h-Deep Sleep Mode During operation, BUSY pad will output high. Note: RAM are unaffected by this command.
0	0	14	0	0	0	1	0	1	0	0	HV Ready Detection	HV ready detection A[7:0] = 00h [POR] The command required CLKEN=1 and ANALOGEN=1. Refer to Register 0x22 for detail. After this command initiated, HV Ready detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).
0	1		0	A6	A ₅	A4	0	A ₂	A ₁	Ao		A[6:4]=n for cool down duration: 10ms x (n+1) A[2:0]=m for number of Cool Down Loop to detect. The max HV ready duration is 10ms x (n+1) x (m) HV ready detection will be trigger after each cool down time. The detection will be completed when HV is ready. For 1 shot HV ready detection, A[7:0] can be set as 00h.

/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	15	0	0	0	1	0	1	0	1	VCI Detection	VCI Detection
0	1	13	0	0	0	0	0	A ₂	A ₁	Ao	VOI Detection	A[2:0] = 100 [POR] , Detect level at 2.3V
												A[2:0] : VCI level Detect
												A[2:0] VCI level
												011 2.2V
												100 2.3V
												101 2.4V
												110 2.5V
												111 2.6V
												Other NA
												The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail. After this command initiated, VCI detection starts. BUSY pad will output high during detection. The detection result can be read from th Status Bit Read (Command 0x2F).
0	0	18	0	0	0	1	1	0	0	0	Temperature Sensor	Temperature Sensor Selection
0	1	10	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	Control	A[7:0] = 48h [POR], external
U	9		A)	Ль	70	/A	7.3	/N2	-CI	Λ0		temperatrure sensor A[7:0] = 80h Internal temperature senso
0	0	1A	0	0	0	1	1	0	1	0	Temperature Sensor	Write to temperature register.
0	1		A 7	A ₆	A 5	A4	Аз	A ₂	A ₁	Ao	Control (Write to temperature register)	A[7:0] = 7Fh [POR]
0	0	1B	0	0	0	1	1	0	1	1	Temperature Sensor	Read from temperature register.
1	1		A7	A ₆	A ₅	A ₄	Аз	A ₂	A ₁	Ao	Control (Read from	t on the two ratios of the contractions to the contraction of the cont
											temperature register)	
0	0	1C	0	0	0	1	1	1	0	0	Temperature Sensor	Write Command to External temperature
0	1	- Carrier	A ₇	A ₆	A ₅	A4	A ₃	A ₂	A ₁	Ao	Control (Write Command	sensor.
0	1	57	B ₇	B ₆	B 5	B ₄	Вз	B ₂	B ₁	Bo	to External temperature	A[7:0] = 00h [POR],
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co	sensor)	B[7:0] = 00h [POR], C[7:0] = 00h [POR],
								04	-,			A[7:6] A[7:6] Select no of byte to be sent 00 Address + pointer 01 Address + pointer + 1st parameter
												Address + pointer + 1st parameter + 2nd pointer 11 Address A[5:0] - Pointer Setting B[7:0] - 1st parameter C[7:0] - 2nd parameter
												The command required CLKEN=1. Refer to Register 0x22 for detail.
												After this command initiated, Write Command to external temperature sensor starts. BUSY pad will output high during operation.
0	0	1F	0	0	0	1	1	1	1	1	IC revision Read	Read IC revision [POR 0x0D]
U	753											

_	man	_				20011		2.2	1	4450	lo	D
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	20	0	0	1	0	0	0	0	0	Master Activation	Activate Display Update Sequence The Display Update Sequence Option is located at R22h. BUSY pad will output high during operation. User should not interrupt this operation to avoid corruption of panel images.
0	0	21	0	0	1	0	0	0	0	1	Display Update Control	RAM content option for Display Update
0	1		A7	A ₆	A5	A ₄	Аз	A ₂	A ₁	Ao	1	A[7:0] = 00h [POR] B[7:0] = 00h [POR]
0	1		B ₇	0	0	0	0	0	0	0		A[7:4] Red RAM option 0000 Normal 0100 Bypass RAM content as 0 1000 Inverse RAM content A[3:0] BW RAM option 0000 Normal 0100 Bypass RAM content as 0 1000 Inverse RAM content B[7] Source Output Mode 0 Available Source from S0 to S175 1 Available Source from S8 to S167
0	0	24	0	0	1	0	0	1	0	0	Write RAM (Black White) / RAM 0x24	After this command, data entries will be written into the BW RAM until another command is written. Address pointers will advance accordingly For Write pixel: Content of Write RAM(BW) = 1 For Black pixel: Content of Write RAM(BW) = 0

/W#	D/C#		ble D7	D6	D5	D4	D3	D2	D1	DO	Command	Description	
0	0	22	0	0	1	0	0	0	1	0	Display Update	Display Update Sequence Option:	
0	1		A ₇	A ₆	A5	A ₄	A 3	A ₂	A ₁	A ₀	Control 2	Enable the stage for Master Activa A[7:0]= FFh (POR)	
												Operating sequence	rameter n Hex)
												Enable clock signal	80
												Disable clock signal	01
												Enable clock signal	CO
												→ Enable Analog Disable Analog	5-7111
												→ Disable clock signal	03
												Enable clock signal → Load LUT with DISPLAY Mode 1 → Disable clock signal	91
												Enable clock signal → Load LUT with DISPLAY Mode 2 → Disable clock signal	99
												Enable clock signal → Load temperature value → Load LUT with DISPLAY Mode 1 → Disable clock signal	B1
												Enable clock signal → Load temperature value → Load LUT with DISPLAY Mode 2 → Disable clock signal	B9
												Enable clock signal → Enable Analog → Display with DISPLAY Mode 1 → Disable Analog → Disable OSC	C7
												Enable clock signal → Enable Analog → Display with DISPLAY Mode 2 → Disable Analog → Disable OSC	CF
												Enable clock signal → Enable Analog → Load temperature value → DISPLAY with DISPLAY Mode 1 → Disable Analog → Disable OSC	F7
												Enable clock signal → Enable Analog → Load temperature value → DISPLAY with DISPLAY Mode 2 → Disable Analog → Disable OSC	FF
0	0	26	0	0	1	0	0	1	1	0	Write RAM (RED) / RAM 0x26	After this command, data entries was written into the RED RAM until and command is written. Address point advance accordingly.	other
113				7	N in	e i						For Red pixel: Content of Write RAM(RED) = 1 For non-Red pixel [Black or White] Content of Write RAM(RED) = 0	:
0	0	27	0	0	1	0	0	1	1	1	Read RAM	After this command, data read on MCU bus will fetch data from RAM According to parameter of Registe to select reading RAM0x24/ RAM0 until another command is written. Address pointers will advance accordingly.	l. r 41h

C/VV#		d Ta	-	D.C.	-		D5	D0	D4	-	Commond	December	1		
	D/C#			D6	D5	D4	D3	D2	D1	D0	Command	Descript		- Alle	
0	0	28	0	0	No.	0		0	0	0	VCOM Sense	for duration defined in 29h before read VCOM value. The sensed VCOM voltage is stored in register The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail. BUSY pad will output high during operation. Stabling time between entering VCOM sensing mode and reading acquired.			is stored in KEN=1 and etail.
0	0	29	0	0	1	0	1	0	0	1	VCOM Sense Duration	Ctabling	time between	an enter	ing VCOM
500	1	29	5757	1	0	0	146	2000	198	1/5	VCOM Sense Duration				
0			0	I.	U	U	A ₃	A2	A ₁	Ao		A[3:0] =	9h, duratio	n = 10s.	3:0]+1) sec
0	0	2A	0	0	1	0	1	0	1	0	Program VCOM OTP	Program	VCOM re	gister into	оОТР
												Refer to	nmand requ Register 0 ad will outp	x22 for d	etail.
												operatio			
0	0	2C	0 A7	0 A6	1 A5	0 A4	1 A3	1 A2	0 A1	0 Ao	Write VCOM register		OM registe 00h [POR]		ICU interface
0															
0												A[7:0]	VCOM	A[7:0]	VCOM
0												A[7:0]	VCOM -0.2	A[7:0]	VCOM -1.7
0															
0												08h	-0.2	44h	-1.7
0												08h 0Ch	-0.2 -0.3	44h 48h	-1.7 -1.8
0												08h 0Ch 10h 14h 18h	-0.2 -0.3 -0.4 -0.5 -0.6	44h 48h 4Ch	-1.7 -1.8 -1.9
0												08h 0Ch 10h 14h 18h 1Ch	-0.2 -0.3 -0.4 -0.5 -0.6 -0.7	44h 48h 4Ch 50h 54h 58h	-1.7 -1.8 -1.9 -2 -2.1 -2.2
0												08h 0Ch 10h 14h 18h 1Ch 20h	-0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8	44h 48h 4Ch 50h 54h 58h 5Ch	-1.7 -1.8 -1.9 -2 -2.1 -2.2 -2.3
0												08h 0Ch 10h 14h 18h 1Ch 20h 24h	-0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9	44h 48h 4Ch 50h 54h 58h 5Ch 60h	-1.7 -1.8 -1.9 -2 -2.1 -2.2 -2.3 -2.4
0												08h 0Ch 10h 14h 18h 1Ch 20h 24h	-0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9	44h 48h 4Ch 50h 54h 58h 5Ch 60h 64h	-1.7 -1.8 -1.9 -2 -2.1 -2.2 -2.3 -2.4 -2.5
0												08h 0Ch 10h 14h 18h 1Ch 20h 24h 28h 2Ch	-0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9 -1 -1.1	44h 48h 4Ch 50h 54h 58h 5Ch 60h 64h 68h	-1.7 -1.8 -1.9 -2 -2.1 -2.2 -2.3 -2.4 -2.5 -2.6
0												08h 0Ch 10h 14h 18h 1Ch 20h 24h 28h 2Ch 30h	-0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9 -1 -1.1 -1.2	44h 48h 4Ch 50h 54h 58h 5Ch 60h 64h 68h 6Ch	-1.7 -1.8 -1.9 -2 -2.1 -2.2 -2.3 -2.4 -2.5 -2.6 -2.7
0												08h 0Ch 10h 14h 18h 1Ch 20h 24h 28h 2Ch 30h 34h	-0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9 -1 -1.1 -1.2 -1.3	44h 48h 4Ch 50h 54h 58h 5Ch 60h 64h 68h 6Ch 70h	-1.7 -1.8 -1.9 -2 -2.1 -2.2 -2.3 -2.4 -2.5 -2.6 -2.7 -2.8
0												08h 0Ch 10h 14h 18h 1Ch 20h 24h 28h 2Ch 30h	-0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9 -1 -1.1 -1.2	44h 48h 4Ch 50h 54h 58h 5Ch 60h 64h 68h 6Ch	-1.7 -1.8 -1.9 -2 -2.1 -2.2 -2.3 -2.4 -2.5 -2.6 -2.7

	man			Name and	I megazili	155000	lana II		(eson	1992	P	
	D/C#		D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	2D	0 A7	0 A6	1 A5	0 A4	1 A3	1 A2	0 A1	1 Ao	OTP Register Read for Display Option	Read Register for Display Option:
1	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	Bo		A[7:0]: VCOM OTP Selection
300	- 88		54277	1.000000	972343	Sever	18STRO	5528	TO VOCALIE	C-5-18(1)	-	(Command 0x37, Byte A)
1	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀	_	B[7:0]: VCOM Register
1	1	_	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀		(Command 0x2C)
1	1		E ₇	E ₆	E ₅	E4	E ₃	E ₂	E ₁	E ₀	_	
1	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	Fo	_	C[7:0]~G[7:0]: Display Mode
1	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	G ₀		(Command 0x37, Byte B to Byte F) [5 bytes]
1	1		H ₇	H ₆	H ₅	H ₄	Нз	H ₂	H ₁	Ho	_	[5 bytes]
1	1		17	16	15	14	13	12	l ₁	lo	_	H[7:0]~K[7:0]: Waveform Version
1	1		J ₇	J 6	J ₅	J ₄	J ₃	J ₂	J ₁	J ₀		(Command 0x37, Byte G to Byte J)
1	1		K ₇	K ₆	K ₅	K ₄	K ₃	K ₂	K ₁	K ₀		[4 bytes]
0	0	2E	0	0	1	0	1	1	1	0	User ID Read	Read 10 Byte User ID stored in OTP:
1	1		A ₇	A ₆	A ₅	A4	A ₃	A ₂	A ₁	A ₀		A[7:0]]~J[7:0]: UserID (R38, Byte A and
1	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀		Byte J) [10 bytes]
1	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co		
1	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀]	
1	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	E ₀		
1	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	Fo		
1	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	Go		
1	1		H ₇	H ₆	H ₅	H ₄	Нз	H ₂	H ₁	Ho		
1	1		17	16	l ₅	14	l ₃	l ₂	l ₁	lo	-	
1	1	-	J ₇	J ₆	J ₅	J ₄	J ₃	J ₂	J ₁	Jo	-	
0	0	2F	0	0	1	0	1	1	1	1	Status Bit Read	Read IC status Bit [POR 0x01]
1	1		0	0	As	A4	0	0	At	Ao		A[5]: HV Ready Detection flag [POR=0] 0: Ready 1: Not Ready A[4]: VCI Detection flag [POR=0] 0: Normal 1: VCI lower than the Detect level A[3]: [POR=0] A[2]: Busy flag [POR=0] 0: Normal 1: BUSY A[1:0]: Chip ID [POR=01] Remark: A[5] and A[4] status are not valid after RESET, they need to be initiated by command 0x14 and command 0x15 respectively.
0	0	30	0	0	1	1	0	0	0	0	Program WS OTP	Program OTP of Waveform Setting The contents should be written into RAN before sending this command. The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.

	man D/C#			De	p.e.	D.	-	Do.	D.	D.	Command	Description
_				D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	31	0	0	1	1	0	0	0	1	Load WS OTP	Load OTP of Waveform Setting
												The command required CLKEN=1. Refer to Register 0x22 for detail.
												BUSY pad will output high during operation.
0	0	32	0	0	1	1	0	0	1	0	Write LUT register	Write LUT register from MCU interface
0	1	-	A ₇	A ₆	A ₅	A4	A ₃	A ₂	A ₁	Ao	White Edit Toglotor	[227 bytes], which contains the content of
0	1		B ₇	B ₆	B ₅	B4	B ₃	B ₂	Bı	Bo		VS[nX-LUTm], TP[nX], RP[n], SR[nXY],
0	1				3		19.00	***	2	11:31		FR and XON[nXY] Refer to Session 6.7 WAVEFORM
0	1		((*)		3916		102 103	\$20 \$20		((*))		SETTING
											A.1	-
0	0	34	0	0	1	1	0	1	0	0	CRC calculation	CRC calculation command For details, please refer to SSD1680A application note.
	ų)										BUSY pad will output high during operation.
0	0	35	0	0	1	1	0	1	0	1	CRC Status Read	CRC Status Read
1	1	-	A ₁₅	A ₁₄	A ₁₃	A ₁₂	A ₁₁	A ₁₀	A ₉	A ₈	Orico States Front	A[15:0] is the CRC read out value
1	1		A ₇	A ₆	A ₅	A ₄	A3	A ₂	A ₁	Ao		
0	0	36	0	0	1	1	0	1	1	0	Program OTP selection	Program OTP Selection according to the OTP Selection Control [R37h and R38h] The command required CLKEN=1. Refer to Register 0x22 for detail.
				y							\	BUSY pad will output high during operation.
0	0	37	0	0	1	1	0	1	1	1	Write Register for Display	Write Register for Display Option
0	1	-	A ₇	0	0	0	0	0	0	0	Option	A[7] Spare VCOM OTP selection
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	Bo		0: Default [POR] 1: Spare
0	1		C7	C ₆	C ₅	C ₄	Сз	C ₂	C ₁	Co		1. Spare
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀		B[7:0] Display Mode for WS[7:0]
0	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	E ₀		C[7:0] Display Mode for WS[15:8] D[7:0] Display Mode for WS[23:16]
0	1		0	F ₆	0	0	F ₃	F ₂	Fı	Fo		0: Display Mode 10: W3[23: 10]
0	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	G ₀		1: Display Mode 2
0	1		H ₇	H ₆	H ₅	H ₄	H ₃	H ₂	H ₁	Ho		F[6]: Ping-Pong for Display Mode 2
0	1		17 J ₇	le Je	J ₅	14 J4	l ₃	l ₂	J ₁	Jo		0: RAM Ping-Pong disable [POR] 1: RAM Ping-Pong enable
												G[7:0]~J[7:0] module ID /waveform version.
												Remarks: 1) A[7:0]~J[7:0] can be stored in OTP 2) RAM Ping-Pong function is not support for Display Mode 1

-	man D/C#	1		D6	D5	D4	D3	D2	D1	DO	Command	Description	Ď.
0	0	38	0	0	1	1	1	0	0	0	Write Register for User ID		
0	1		A ₇	A ₆	A ₅	A4	A ₃	A ₂	A ₁	A ₀		A[7:0]]~J[7	7:0]: UserID [10 bytes]
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀		Remarks: A	[7:0]~J[7:0] can be stored in
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co		OTP	it is atticated in
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	Do			
0	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	Eo			
0	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	Fo	<u> </u>		
0	1	_	G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	Go			
							-	71907		-			
0	1		H ₇	H ₆	H ₅	H ₄	H ₃	H ₂	H ₁	Ho			
0	1		17	16	15	14	l ₃	12	l ₁	lo			
0	1		J ₇	J ₆	J 5	J ₄	J ₃	J ₂	J ₁	Jo			
0	0	39	0	0	1	1	1	0	0	1	OTP program mode	OTP progra	ım mode
0	1		0	0	0	0	0	0	A ₁	Ao		A[1:0] = 11: programmir : User is red	Normal Mode [POR] Internal generated OTP ng voltage quired to EXACTLY follow the
0	0	3C	0	0	1	1	1	1	0	0	Border Waveform Control	Select borde	er waveform for VBD
0	1		A 7	A ₆	A 5	A 4	0	0	A ₁	Ao		A[7:0] = C01	n [POR], set VBD as <mark>H</mark> IZ. ect VBD option
												A[7:6]	Select VBD as
												00	GS Transition,
												01	Defined in A[2] and A[1:0] Fix Level,
												0.1	Defined in A[5:4]
												10	VCOM
												11[POR]	HiZ
												200000000000000000000000000000000000000	II AU-NORTHAIR DI PERANGUARE
													evel Setting for VBD
												A[5:4]	VBD level
												00	VSS
												01	VSH1
												10	VSL
												11	VSH2
												VBD Level S	; 01b: VSH1;
												A[1:0]	VBD Transition
												00	LUT0
												01	LUT1
												10	LUT2
												11	LUT3
- 1	59000	TARK .	100	310.74		-	0. 0.		T .		Z dec 27 con un altre les angle inscreaments		-440
0	0	3F	0	0	1	1	1	1	1	1	End Option (EOPT)	Option for L	
0	1		A 7	A 6	A 5	A4	Аз	A2	A ₁	Ao		command o setting.	should be set for this r prog <mark>ra</mark> mmed into Waveforr
												22h Nor	
													rce output level keep
												pre	vious output before power of

	man D/C#	-	-	D6	D5	D4	D3	D2	D1	DO	Command	Descripti	on			
0	0	41	0	117	0	0	0	0	0	1	Read RAM Option					
0	1	41	0	0	0	0	0	0	0	Ao	Read RAIM Option	Read RAM Option A[0]= 0 [POR] 0: Read RAM corresponding to RAM0x24 1: Read RAM corresponding to RAM0x26				
NO.			9.50			T come				1	Execution and a constant and a const	99 1986 - 1988 - 1988	H 125 - 1247/45	HI SECAN	914400C	
0	0	44	0	1	0	0	0	1	0	0	Set RAM X - address		ne start/en			
0	1		0	0	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Start / End position	CONTRACTOR OF THE PARTY OF THE	ddress in		ction by a	
0	1		0	0	B ₅	B ₄	B ₃	B ₂	B ₁	Bo		address unit for RAM A[5:0]: XSA[5:0], XStart, POR = 00h B[5:0]: XEA[5:0], XEnd, POR = 15h				
0	0	45	0	1	0	0	0	1	0	1	Set Ram Y- address	Specify the start/end positions of the				
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	Start / End position		ddress in			
0	1	- 6	0	0	0	0	0	0	0	A ₈	1.50		unit for RA		12/02	
0	1	-	B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀	-	V18-U1- A8	SA[8:0], YS	Start BOE	2 - 000h	
0	1		0	0	0	0	0	0	0	B ₈	-0		EA[8:0], YE			
		====									-		COLUMN TO THE PERSON OF THE PE		DAL 7 - NIVE 4000-10-0	
0	0	46	0	1	0	0	0	1		0	Auto Write RED RAM for	Auto Write A[7:0] = 0		M for Reg	jular Patt	
0	1		A7	A ₆	A 5	A ₄		A2	A ₁	204 (15)		A[7]: The 1st step valu A[6:4]: Step Height, Po Step of alter RAM in Y according to Gate		POR= 00	00	
												A[6:4]	Height	A[6:4]	Height	
												000	8	100	128	
												001	16	101	256	
												010	32	110	296	
												011	64	111	NA	
												Step of all according	ep Width, ter RAM ir to Source	X-directi	on	
													Width		Width	
												000 8 100 128 001 16 101 176		128		
														176		
												010	32	110	NA	
												011	64	111	NA	
											1	BUSY par operation	d will outpo	ut high du	ring	

R/W#	D/C#	Hex	D 7	D6	D5	D4	D3	D2	D1	D0	Command	Descripti	on				
0	0	47	0	1	0	0	0	1	1	1	Auto Write B/W RAM for	Auto Write B/W RAM for Regular Patter					
0	1		A ₇	A ₆	A5	A4	0	A ₂	A ₁	A ₀	Regular Pattern	A[7:0] = 00h [POR]					
												A[6:4]: Step of al	[7]: The 1st step value, POR = 0 [6:4]: Step Height, POR= 000 Step of alter RAM in Y-direction according to Gate				
												A[6:4]	Height	A[6:4]	Height		
												000	8	100	128		
												001	16	101	256		
												010	32	110	296		
												011	64	111	NA		
												A[2:0]	to Source Width 8	A[2:0] 100	Width 128		
												001	16	101	176		
												010	32	110	NA		
												011	64	111	NA		
												During op high.	eration, B	USY pad	will output		
0	0	4E	0	1	0	0	1	1	1	0	Set RAM X address	Make initi	al settings	for the R	AM X		
0	1		0	0	A 5	A 4	Аз	A 2	Aı	Ao	counter	Make initial settings for the RAM X address in the address counter (AC) A[5:0]: 00h [POR].					
0	0	4F	0	1	0	0	1	1	1	1	Set RAM Y address	Make initi	al settings	for the R	AM Y		
0	1		A7	A ₆	A ₅	A4	Аз	A2	A ₁	Ao	counter		the addr		er (AC)		
0	1		0	0	0	0	0	0	0	A ₈		A[8:0]: 00	0h [POR].				
0	0	7F	0	1	1	1	1	1	1	1	NOP	This com	mand is ar	empty co	ommand:		
												This command is an empty commodoes not have any effect on the amodule. However it can be used to termin Frame Memory Write or Read Commands.		he display minate			

WINSTAR Display 26/39 2.7 inch Series

8. Optical Specifications

Measurements are made with that the illumination is under an angle of 45 degree, the detection is perpendicular unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур.	Max	Units	Notes
R	White Reflectivity	White	30	35	•	%	8-1
CR	Contrast Ratio	Indoor	8:1		ı		8-2
GN	2Grey Level	-		DS+(WS-DS)*n(m-1)			8-3
T update	Image update time	at 25 °C		3	ı	sec	
Life		Topr		1000000times or 5years			

Notes:

8-1. Luminance meter: Eye-One Pro Spectrophotometer.

8-2. CR=Surface Reflectance with all white pixel/Surface Reflectance with all black pixels.

8-3 WS: White state, DS: Dark state

9. Handling, Safety and Environment Requirements

Warning

The display glass may break when it is dropped or bumped on a hard surface. Handle with care. Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

Caution

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components. Disassembling the display module.

Disassembling the display module can cause permanent damage and invalidates the warranty agreements.

Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged. Moreover the display is sensitive to static electricity and other rough environmental conditions.

	Data sheet status
Product specification	This data sheet contains final product specifications.
	Limiting values

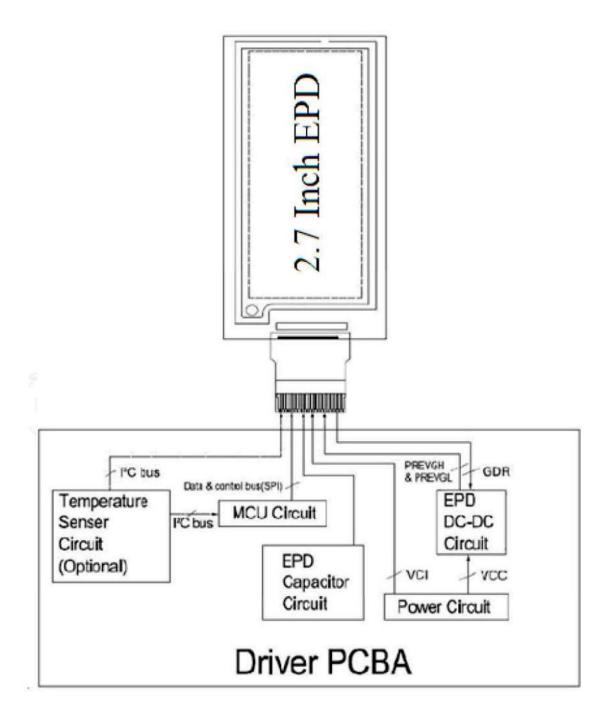
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC

134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

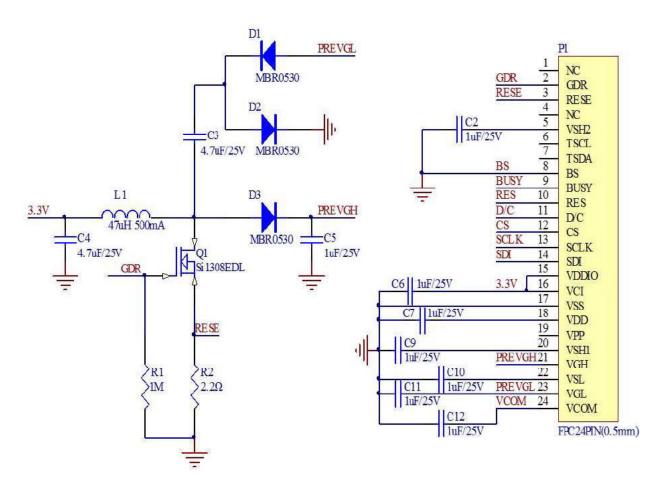
Where application information is given, it is advisory and does not form part of the specification.

10.Reliability test


NO	Test items	Test condition
1	Low-Temperature Storage	T = -25°C, 240 h Test in white pattern
2	High-Temperature Storage	T=70°C, RH=40%, 240h Test in white pattern
3	High-Temperature Operation	T=50°C, RH=35%, 240h
4	Low-Temperature Operation	0°C, 240h
5	High-Temperature, High-Humidity Operation	T=40°C, RH=80%, 240h
6	High Temperature, High Humidity Storage	T=50°C, RH=80%, 240h Test in white pattern
7	Temperature Cycle	1 cycle:[-25° C 30min]→[+70 ° C 30 min] : 50 cycles Test in white pattern
8	UV exposure Resistance	765W/m² for 168hrs,40 °C Test in white pattern
9	ESD Gun	Air+/-15KV;Contact+/-8KV (Test finished product shell, not display only) Air+/-8KV;Contact+/-6KV (Naked EPD display, no including IC and FPC area) Air+/-4KV;Contact+/-2KV (Naked EPD display, including IC and FPC area)

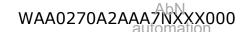
Note:

Put in normal temperature for 1hour after test finished, display performance is ok.

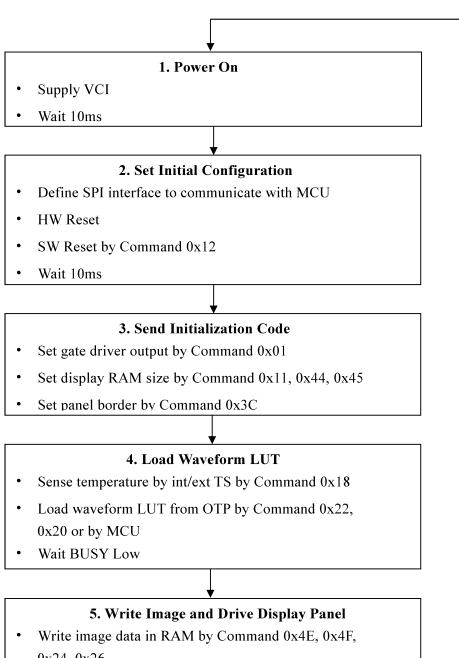

11. Block Diagram

WINSTAR Display 30/39 2.7 inch Series

12. Reference Circuit


Part Name	Requirements for spare part
C1—C12	0603/0805; X5R/X7R;Voltage Rating:≥25V
R1、R2	0603/0805;1% variation,≥0.05W
D1—D3	MBR0530: 1)Reverse DC Voltage≥30V 2)Io≥500mA
D1—D3	3)Forward voltage ≤430mV
Q1	Si1308EDL:1)Drain-Source breakdown voltage≥30V
Qı	2)Vgs(th)≤1.5V 3)Rds(on)≤400mΩ
L1	refer to NR3015: Io=500mA(max)
P1	24pins,0.5mm pitch

13. Matched Development Kit


Our Development Kit designed for SPI E-paper Display aims to help users to learn how to use E-paper Display more easily. It can refresh black-white E-paper Display and three-color (black, white and red/Yellow) WINSTAR Display 's E-paper Display. And it is also added the functions of USB serial port, Raspberry Pi and LED indicator light ect. DESPI Development Kit consists of the development board and the pinboard.

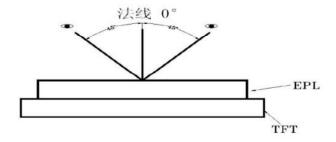
14. Typical Operating Sequence

14.1 Normal Operation Flow

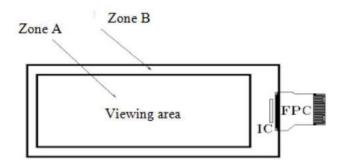
- 0x24, 0x26
- Set softstart setting by Command 0x0C
- Drive display panel by Command 0x22, 0x20
- Wait BUSY Low

6. Power Off

- Deep sleep by Command 0x10
- Power OFF


15.Inspection condition 15.1 Environment

Temperature: $25\pm3^{\circ}$ C Humidity: $55\pm10^{\circ}$ RH


15.2 Illuminance

 $Brightness: 1200 {\sim} 1500 LUX; distance: 20-30 CM; Angle: Relate~30° surround.$

15.3 Inspection method

15.4 Display area

15.5 Inspection standard

15.5.1 Electric inspection standard

NO.	Item	Standard	Defect level	Method	Scope
1	Display	Display complete Display uniform	MA		
2	Black/White spots	D≤0.25mm, Allowed 0.25mm < D≤0.4mm on N≤3, and Distance≥5mm 0.4mm < D Not Allow	MI	Visual inspection	
3	Black/White spots (No switch)	L \leq 0.6mm, W \leq 0.2mm, N \leq 1 L \leq 2.0mm,W $>$ 0.2mm, Not Allow L $>$ 0.6mm, Not Allow	MI	Visual/ Inspection card	Zone A
4	Ghost image	Allowed in switching process	MI	Visual inspection	
5	Flash spots/ Larger FPL size	Flash spots in switching, Allowed FPL size larger than viewing area, Allowed	MI	Visual/ Inspection card	Zone A Zone B
6	Display wrong/Missing	All appointed displays are showed correct	MA	Visual inspection	Zone A
7	Short circuit/ Circuit break/ Display abnormal	Not Allow			7

WINSTAR Display 35/39 2.7 inch Series

15.5.2 Appearance inspection standard

NO.	Item	Standard	Defect level	Method	Scope
1	B/W spots /Bubble/ Foreign bodies/ Dents	D= $(L+W)/2$ D ≤ 0.25 mm, Allowed 0.25mm $<$ D ≤ 0.4 mm, N ≤ 3 D >0.4 mm, Not Allow	MI	Visual inspection	Zone A
2	Glass crack	Not Allow	MA	Visual	Zone A Zone B
3	Dirty	Allowed if can be removed	MI	/ Microscope	Zone A Zone B
4	Chips/Scratch/ Edge crown	X≤3mm, Y≤0.5mmAnd without affecting the electrode is permissible 2mm≤X or 2mm≤Y Not Allow W≤0.1mm,L≤5mm, No harm to the electrodes and N≤2 allow	MI	Visual / Microscope	Zone A Zone B
5	TFT Cracks	Not Allow	MA	Visual / Microscope	Zone A Zone B
6	Dirty/ foreign body	Allowed if can be removed/ allow	MI	Visual / Microscope	Zone A / Zone B
7	FPC broken/ Goldfingers exidation/ scratch	Not Allow	MA	Visual / Microscope	Zone B

8	TFT edge bulge /TFT chromatic aberration	TFT edge bulge: X≤3mm, Y≤0.3mm Allowed TFT chromatic aberration :Allowed	MI	Visual / Microscope	Zone A Zone B
9	PCB damaged/ Poor welding/ Curl	PCB (Circuit area) damaged Not Allow PCB Poor welding Not Allow PCB Curl≤1%			
10	Edge glue height/ Edge glue bubble	Edge Adhesives H≤PS surface (Including protect film) Edge adhesives seep in≤1/2 Margin width Length excluding Edge adhesives bubble: bubble Width ≤1/2 Margin width; Length ≤0.5mm₀ n≤5	MI	Visual / Ruler	Zone B
11	Protect film	Surface scratch but not effect protect function, Allowed		Visual Inspection	
12	Silicon glue	Thickness ≤ PS surface(With protect film): Full cover the IC; Shape: The width on the FPC ≤ 0.5mm (Front) The width on the FPC≤1.0mm (Back) smooth surface,No obvious raised.	MI	Visual Inspection	
13	Warp degree (TFT substrate)	t≤2.0mm	MI	Ruler	
14	Color difference in COM area (Silver point area)	Allowed		Visual Inspection	

16. Packing

TBD

17. Precautions

- (1) Do not apply pressure to the EPD panel in order to prevent damaging it.
- (2) Do not connect or disconnect the interface connector while the EPD panel is in operation.
- (3) Do not touch IC bonding area. It may scratch TFT lead or damage IC function.
- (4) Please be mindful of moisture to avoid its penetration into the EPD panel, which may cause damage during operation.
- (5) High temperature, high humidity, sunlight or fluorescent light may degrade the EPD panel's performance. Please do not expose the unprotected EPD panel to high temperature, high humidity, sunlight, or fluorescent for long periods of time.