International IOR Rectifier PD - 95137A # IRF7416PbF HEXFET® Power MOSFET Top View - Ultra Low On-Resistance - P-Channel Mosfet - Surface Mount Generation V Technology #### Description Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications. The SO-8 has been modified through a customized leadframe for enhanced thermal characteristics and multiple-die capability making it ideal in a variety of power applications. With these improvements, multiple devices can be used in an application with dramatically reduced board space. The package is designed for vapor phase, infra red, or wave soldering techniques. Power dissipation of greater than 0.8W is possible in a typical PCB mount application. **Absolute Maximum Ratings** | | Parameter | Max. | Units | | |--|--|--------------|-------|--| | I _D @ T _A = 25°C | Continuous Drain Current, V _{GS} @ -10V | -10 | | | | I _D @ T _A = 70°C | Continuous Drain Current, V _{GS} @ -10V | -7.1 | А | | | I _{DM} | Pulsed Drain Current ① | -45 | | | | P _D @T _A = 25°C | Power Dissipation | 2.5 | W | | | | Linear Derating Factor | 0.02 | W/°C | | | V _{GS} Gate-to-Source Voltage | | ± 20 | V | | | E _{AS} | Single Pulse Avalanche Energy© | 370 | mJ | | | dv/dt | Peak Diode Recovery dv/dt 3 | -5.0 | V/ns | | | TJ | Operating Junction and | -55 to + 150 | °C | | | T _{STG} | Storage Temperature Range | -55 10 + 150 | | | #### Thermal Resistance | | Parameter | Max. | Units | |-----------------|-----------------------|------|-------| | $R_{\theta JA}$ | Junction-to-Ambient ® | 50 | °C/W | # IRF7416PbF International #### Static Electrical Characteristics @ T_J = 25°C (unless otherwise specified) | | Parameter | Min. | Тур. | Max. | Units | Conditions | |-----------------------------------|--------------------------------------|------|--------|-------|-------|--| | $V_{(BR)DSS}$ | Drain-to-Source Breakdown Voltage | -30 | | | V | $V_{GS} = 0V, I_D = -250\mu A$ | | $\Delta V_{(BR)DSS}/\Delta T_{J}$ | Breakdown Voltage Temp. Coefficient | | -0.024 | | V/°C | Reference to 25°C, $I_D = -1 \text{ mA}$ | | R _{DS(on)} | Static Drain-to-Source On-Resistance | | | 0.020 | () | $V_{GS} = -10V, I_D = -5.6A \ \oplus$ | | | | | | 0.035 | 52 | $V_{GS} = -4.5V, I_{D} = -2.8A$ @ | | $V_{GS(th)}$ | Gate Threshold Voltage | -1.0 | | -2.04 | V | $V_{DS} = V_{GS}, I_{D} = -250 \mu A$ | | gfs | Forward Transconductance | 5.6 | | | S | $V_{DS} = -10V, I_{D} = -2.8A$ | | I _{DSS} | Drain-to-Source Leakage Current | | | -1.0 | | $V_{DS} = -24V, V_{GS} = 0V$ | | | | | | -25 | μΑ | $V_{DS} = -24V, V_{GS} = 0V, T_{J} = 125^{\circ}C$ | | I _{GSS} | Gate-to-Source Forward Leakage | | | -100 | nΛ | V _{GS} = -20V | | | Gate-to-Source Reverse Leakage | | | 100 | nA | $V_{GS} = 20V$ | ### Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise specified) | | Parameter | Min. | Тур. | Max. | Units | Conditions | |---------------------|---------------------------------|------|------|------|-------|--| | Q_g | Total Gate Charge | | 61 | 92 | | $I_{D} = -5.6A$ | | Q_gs | Gate-to-Source Charge | | 8.0 | 12 | nC | $V_{DS} = -24V$ | | Q_gd | Gate-to-Drain ("Miller") Charge | | 22 | 32 | | V_{GS} = -10V, See Fig. 6 & 9 @ | | t _{d(on)} | Turn-On Delay Time | | 18 | | | $V_{DD} = -15V$ | | t _r | Rise Time | | 49 | | no | $I_{D} = -5.6A$ | | t _{d(off)} | Turn-Off Delay Time | | 59 | | ns | $R_G = 6.2\Omega$ | | t _f | Fall Time | | 60 | | | $R_D = 2.7\Omega$, See Fig. 10 \oplus | | C _{iss} | Input Capacitance | | 1700 | | | $V_{GS} = 0V$ | | C _{oss} | Output Capacitance | | 890 | | pF | $V_{DS} = -25V$ | | C _{rss} | Reverse Transfer Capacitance | | 410 | | | f = 1.0MHz, See Fig. 5 | #### **Diode Characteristics** | | Parameter | Min. | Тур. | Max. | Units | Conditions | | |-----------------|---------------------------|------|------|------|-------|--|--| | Is | Continuous Source Current | | | -3.1 | | MOSFET symbol | | | | (Body Diode) | | | -3.1 | A | showing the | | | I _{SM} | Pulsed Source Current | | | -45 | 1 ^ | integral reverse | | | | (Body Diode) ① | | | -45 | | p-n junction diode. | | | V_{SD} | Diode Forward Voltage | | | -1.0 | V | $T_J = 25$ °C, $I_S = -5.6A$, $V_{GS} = 0V$ ③ | | | t _{rr} | Reverse Recovery Time | | 56 | 85 | | $T_J = 25^{\circ}C, I_F = -5.6A$ | | | Q _{rr} | Reverse Recovery Charge | | 99 | 150 | nC | di/dt = 100A/µs ③ | | #### Notes: - ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11) - ② Starting T_J = 25°C, L = 25mH R_G = 25 Ω , I_{AS} = -5.6A. (See Figure 12) - $\label{eq:local_local_local} \begin{tabular}{l} $I_{SD} \leq -5.6A, \ di/dt \leq 100A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \\ $T_J \leq 150^{\circ}C$ \end{tabular}$ - 4 Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$. # International TOR Rectifier # IRF7416PbF Fig 1. Typical Output Characteristics Fig 3. Typical Transfer Characteristics Fig 2. Typical Output Characteristics **Fig 4.** Normalized On-Resistance Vs. Temperature **Fig 5.** Typical Capacitance Vs. Drain-to-Source Voltage Fig 7. Typical Source-Drain Diode Forward Voltage **Fig 6.** Typical Gate Charge Vs. Gate-to-Source Voltage Fig 8. Maximum Safe Operating Area # International **TOR** Rectifier ## IRF7416PbF $\begin{array}{c|c} & R_D \\ \hline V_{GS} \\ \hline V_{GS} \\ \hline \end{array} \hspace{0.5cm} D.U.T. \\ \hline \begin{array}{c|c} & \\ & \\ \hline \end{array} \hspace{0.5cm} V_{DD} \\ \hline \begin{array}{c|c} & \\ & \\ \hline \end{array} \hspace{0.5cm} V_{DD} \\ \hline \end{array}$ Fig 9a. Basic Gate Charge Waveform Fig 10a. Switching Time Test Circuit Fig 9b. Gate Charge Test Circuit Fig 10b. Switching Time Waveforms Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient IRF7416PbF International Rectifier Fig 12a. Unclamped Inductive Test Circuit Fig 12b. Unclamped Inductive Waveforms Fig 12c. Maximum Avalanche Energy Vs. Drain Current International TOR Rectifier ## IRF7416PbF ## Peak Diode Recovery dv/dt Test Circuit - * Reverse Polarity for P-Channel - ** Use P-Channel Driver for P-Channel Measurements *** V_{GS} = 5.0V for Logic Level and 3V Drive Devices Fig 13. For P-Channel HEXFETS ## IRF7416PbF International TOR Rectifier ## **SO-8 Package Outline** Dimensions are shown in millimeters (inches) | | DIM INCHES MILLIMET | | ETERS | | | |-------|---------------------|-------|-------------|------|--| | DIIVI | MIN | MAX | MIN | MAX | | | Α | .0532 | .0688 | 1.35 | 1.75 | | | A1 | .0040 | .0098 | 0.10 | 0.25 | | | b | .013 | .020 | 0.33 | 0.51 | | | С | .0075 | .0098 | 0.19 | 0.25 | | | D | .189 | .1968 | 4.80 | 5.00 | | | E | .1497 | .1574 | 3.80 | 4.00 | | | е | .050 B | ASIC | 1.27 BASIC | | | | e1 | .025 B | ASIC | 0.635 BASIC | | | | Н | .2284 | .2440 | 5.80 | 6.20 | | | K | .0099 | .0196 | 0.25 | 0.50 | | | L | .016 | .050 | 0.40 | 1.27 | | | У | 0° | 8° | 0° | 8° | | #### NOTES: - 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994. - 2. CONTROLLING DIMENSION: MILLIMETER - 3. DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES). - 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA. - (5) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 (.006). - (6) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 (.010). - (7) DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO ASUBSTRATE. ### **SO-8 Part Marking** EXAMPLE: THIS IS AN IRF7101 (MOSFET) International IOR Rectifier ## IRF7416PbF ## **SO-8 Tape and Reel** Dimensions are shown in millimeters (inches) #### NOTES: - 1. CONTROLLING DIMENSION : MILLIMETER. - 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. - CONTROLLING DIMENSION : MILLIMETER. OUTLINE CONFORMS TO EIA-481 & EIA-541. Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualifications Standards can be found on IR's Web site. IR WORLD HEADQUARTERS: 101N.Sepulveda Blvd, El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 06/2011 #### IMPORTANT NOTICE The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com). #### WARNINGS Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office. Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.